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Abstract

An integral equation approach based on the mixed-potential fur•rrii latiom io devel'

oped for the analysis of radiation, scattering and guidance of ,lvctroaizn,,i' IC

by arbitrarily shaped conducting objects in layered uniaxia i media. lhis rmlet 1hod,

successfully applied to rigorously analyze coax- and waveguiide-fed rlicrot Trip pat ch

antennas of various shapes. as well as multiconductor iransmission lilve, w"i7h ,,n-

ductors of various cross-section profiles, embedded in multilayered miedia. \0it h th

approach developed here. microstrip structures of various, possibly irregular 'hapc,>.

embedded in multilayered isotropic or uniaxial substrates. may be invest izaiald wit hin

one theoretical framework and using the same computer prograrn.

Acae3sn ,?r For

- ". .' I /oU . .



Preface

This report comprises five technical papers writteri by the principal iUvf>f itator and

his collaborators. The unifying theine is the development and appi cation f 4 Il,

mixed-potential integral equation (XI PIE) formulation to t he analysis of radiat iufl.

scattering and guidance of electromagnetic waves by conduct ing objects ei ri bedded in

layered material media, with emphasis on non-planar structures baving irre,.ul;ir (),

arbitrary shapes. The papers included here have been submitted for publication in

scientific journals arid, hence, are to a large degree self-contained. As a resiui. tHiere

is a certain amount of overlap in the material they cover.
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Formulation of Mixed-Potential Integral Equations
for Arbitrarily Shaped Microstrip Structures
with Uniaxial Substrates

Krzysztof A. Michalski

Electromagnetics &: Microwave Laboratorv
Department of Electrical Engineering
Texas A&NI University
College Station. Texas 778433128. USA

Running head: Formulation of Mixed-Potential Integral -qupations

Keywords: Microstrip, integral equation, layered medium, (Green's funic io0

Abstract-A systematic development is presented of three distinct mixed-potential

integral equations for the analysis of printed circuits, microstrip resonators. and an-

tennas embedded in multi-layered, planar. uniaxial media of infinite lateral extelit.

with emphasis on microstrip structures comprising non-planar conductors of irregduar

or arbitrary shapes.

1 Introduction

Most of the analysis methods presently available for the analvsis of microstr;i, st ruc-

tures are either limited to or optimized for planar geometries with regi',., shapes.

However, in view of the recent advances in the development of the rm,,nolithic mi-

crowave and millimeter-wave integrated circuits. it is increasingly important to have

at one's disposal techniques, which would make it possible to acci.ately and efticientlv

analyze more complex microstrip geometries. comprising nox.-planar conductors. In

this paper, we discuss an integral equation approach. ,- iich we have found to be

especially suitable for this task. More specifically. we -:evelop three distinct forms of

the so-called mixed-potential integral equation (MPIE) [1,. [21 for arblitrarily .haped

conducting objects embedded in a planar, multi-layered. material nedium of infinite



lateral extent, which may be ,iLiaxially anisotropic. I'he d(li in•t n in• f.attlirt, uf t hi,

NIPIE formulations is that they employ vector and scalar ptntirmtds, wici-h are ,x.

pressed. respectively, in terms of the current and charge densities. l aI,.rc I)rofra i,.c

to other forms of the electric field uit egral equation (EF I F. hte e i IhY ITI Vol I\"ye,

singular kernels and faster convergent spectral integrals tor ýmrit', !. and are a lli'enahl

to the well-established method-of-imoments NYO IO.) solt iton pr~ ,et mre.. ,ri -.i na I

developed for arbitrarily shaped conducting scatterers II fre space '3. 1 1 '7

An MPIE was first used ,n the present context by Ylosig and (;atrh 0,l f. IVo

applied it to analyze planar microstrip patch antennas of various shapes pc,' also7

[8). An extension o" this approach to non-planar conductors in laYered media wa.,

later proposed by Michalski [1]. More recmntlv. Michalski and Zheng hayv, developed

three alternative MPIE formulations [9]. referred to as Formulations A. B. arid C. and

applied Formulation C to analyze scatterers and antennas of various shapes partially

buried in a material half-space [101. as well as microstrip transmission lines having

conductors of arbitrary cross-section [111. In the present paper. we extend the NIPIE

approach of [9] to the case of uniaxial media. which have important applications

in modern microwave circuits [12], [13]. Although the approach presented here ihas

successfully been applied to a number of structures in layered media I11L. rl. I. [1:i.

[16]. [17], the details of the development have not yet appeared in the open literature.

The remainder of this paper is organized as follows. The problem statement is

given in Section 2. In Section 3. we introduce the Fourier transform apparatus that

considerably simplifies the following development, and express the electric dyadic

Green's function of the layered uniaxial medium in terms of the voltage and current

Green's functions of its transmission line network analog. For easy reference, the

transmission line Green's functions pertinent to a multi-layered uniaxial medium are

given in the appendix. The main result is given in Section 4, where we develop and

discuss three distinct MPIE forms for non-planar conducting structures of arbitrary

shape embedded in the layered medium. using the dy(adic Green's function given in

Section 3 as the point of departure. We close, in Section 5. with the summary and

conclusions.



m 2 Problem Statement

We discuss the .\IPIE approach in the context of ttw gcn(•ral t}r{}bhm• ill•traT,•,t ilt

Fig. 1. which shows an arbitrarily shaped {{m{tucting {)b.i{'{•. {'rnb{',hl•',] in a law.r,,,i

lid medium and excited by (presumably known)eh•ctric and magmqi," curr,,•s. J' a•M

Mi. respectively. The material layers are uniform and of intinile ,'x•,,nt ai•m• •h," .r

(z), l
. . 2 2 . . 2 2 7 ; . 2 . . . . . . 2 2 . - - 2 ' 2 2 2 . , .

i Z=Z3

D '"
Z := 222

<', •I, •1 M• • Ys.,
t

<,.. ........ . . ... . . ... . .. . • . . Z •-- -Z 1
::::i:::?i.i:i:i:?:ii:?:::i:?:i:??:i::!:?!:!.i:!" i ::

D
Figure l: Arbitrarily shaped conducting object in a layered medium.

,n-,d y axes, and may be uniaxially anisotropic, with the optic axis parallel •o the :

axis. The nth layer is characterized by the permittivity and permeability dvadics
D

where/'t is the unit dyadic transverse to z, and •:t,• (ltt.) and e.:,, (#:•) denote, respec-

tively, the transverse and longitudinal dielectric (magnetic) constants relative •o fie,"

space. Observe that we distinguish dyadics by' double underlines and unit vectors by

carets. The free space permeability and permittivity will be denoted by t,0 and t,.

respectively. For each layer, we also introduce its electric and magnetic anisotropy



rat-ios. v' arid v h. respectively, given as

The top and hot t orn layers miay be of i nfini te ext ent itlon U t he a xIs 01, a,, ill lstrat ed

in Fig. 1--may be shielded by ground planes having specitied surface iid n ittaf(

S ,x+l and V , respectivelv, where the latter are infiniite for perfect- electri'i( (0Iidlic(

tors.

The original problem of Fig. I miay be replaced by its, equivalent I. p,1. 10f61 shown

in Fig. 2. where the conducting object has been removed andl its, effect replaced bY all

(Z)
A,

Z -ZN-I

Z-ZN

Z -Z3

is Z-Z 2

Mi, YS,

Figure 2: Problem equivalent to that in Fig. 1.

as yet unknown electric surface current with density J;, residing on a miathemati'Cal

surface S. Because this current exists in the absence of the conduicting object, the

resulting electric field can be expressed as [19]. [201

E(r) JG (rlr) J(r') dr'(1

4
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where the integration is over the region occupied by J the volume current dew.itv

associated with Js. r and r' denote the position vectors associated wit h the field ;11A

source coordinates, respectively, and wkiere Gk. is the electric dyadic Green's func i01

of the layered medium. This Green's dyadic will be developed in Secion 3.

Although the equivalent current in Fig. 2 is not known. we may easily forimulaic

an EFIE that Jsq satisfies by imposing the impedance boundary condition '2l. p. P-`

on the surface S of the object. Hence, upon using (3). we obtain

ZS L A,(r). Js(r) dS - IAn,(r).JiE (r I r) j5(r')d(S'd

= fA•(r). E'(r)d.S 1

where {A,} is a suitable set of vector weight functions defined over and tangential to

S. E' is the 'Incident' electric field due to JX and M' radiating in the layered medium

of Fig. 2. and where Zs is the surface impedance of the conducting object. given as

Zs- f ":)zo
SS oVcý 2 (5)

in which a, denotes the conductivity and 6, the skin depth of the conductor. In the

case of strip-like structures, (5) is only applicable if 6C << t,. where t- is the strip

thickness. If this condition is violated the expression

S(

Qctc

may be more appropriate [22]. In the above and throughout this paper, the (:J` tilme

variation is assumed.

The EFIE (4) can, in principle at least, be solved for js by a MOM procedure.

but the severe singularity of its kernel as r' approaches r on S makes it unsuitable

for this purpose. A better approach is based on a mixed-potential representation of

E, given as

- E(r) = A(r) + VFP(r) (7)

5
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in which the vector and scalar potentials. A and D. respectively, are expressed ,.-

= V'GO(rlr')• J(r') dr' (!)

where GA and GO are the vector and scalar potential kernels, and where V' operates

on the primed (source) coordinates. In view of the divergence theorem [23. p. 50T3.

the above two forms of ,i are equivalent provided A. J vanishes on the surface S of

the object, where Ai is a unit vector normal to S, and-if J penetrates a boundary

between material layers, as illustrated in Fig. 2-provided G;' is a continuous function

of z' across the interface. Upon using (7) in conjunction with (8) and (9). instead of

(3), in the impedance boundary condition on S, and applying the divergence theorem.

we arrive at the MPIE

Zs J A,(r). Js(r) dS + A,(r). J-4 G(rIr')• Js(r') dS' d,5"

- f V. A,(r) I G0(r Ir)•V. Js(r')dS' dS = (A(r). E(r)dq (10)

provided G'* is a continuous function of z across any interface between dissimilar

material layers the conducting object penetrates. Observe that in view of the equat ion

of continuity, V.Js in the above is directly proportional to the surface charge density.

Comparing the EFIE (4) with the MPIE (10), we note that in the latter the differential

operator VV' has in effect been extracted from GE and transferred onto A,, and J-.

As a consequence, the kernels GQA and G' appearing in (10) are less singular than

GE, and the Sommerfeld-type integrals that arise converge more rapidly.

The form of (10) is not unique and leads to different MPIE formulations, depending

on the choice of GQA and G6. In Section 4. we develop three distinct MIPIE forms thai

have been found useful in MOM analyses of the radiation. scattering, anrd guidance of

electromagnetic fields by arbitrarily shaped conducting structures in layered media.

6



The development is carried out in the spectral domain and it proceeds froni tit(,

spectral electric dyadic Green's function of the layered mediloin. deve'loped Hi Ow,

next section.

3 Preliminaries

Following Felsen and Marcuvitz [24. p. 188], we view the lavered mlldiurin jI :Ij . 2

as a waveguide along the z axis and expand the electromagnetic fields and curr ,niti

in terms of the waveguide modes. Because the waveguide cross 'ectio(i is ot in1finite

extent along the x and y coordinates, the eigerivalues corresponding to the latter.

k, and k/, respectively, form continuous spectra on the real axis. ('onsequent ly. t hle

modal expansions may be expressed as the familiar double Fourier transforms, which

prompts us to introduce the Fourier transform pair

+:C +'V,

F If (p)} I (ko) f J f(p) c3k-1P dxdy1 (i

-' {f(k,)} - f(p) (22 f f( ) C --

where kp = i k,+j k. is the spectral domain counterpart of p = i•x+-y. If we now write

E(r) as E(p; z), its Fourier transform may be expressed as E(k-: z ). and similarlv

for the other field quantities. We also note that in the spectral domain the operator

nabla becomes V= -jk,+i.O/z, which suggests that we introduce a rotated spectral

domain coordinate system based on k, as illustrated in Fig. :3. where (cf. [2']. [26].

[273, [28])

u=- , v= ' -k k'-V/A±k2  (1:31

When the Fourier- transformed Maxwell's equations are projected on this coordinate

system. it is found that the spectral domain electromagnetic field may efficiently and

elegantly be expressed in terms of the voltages and currents on two transmission lines

along the z axis. with the propagation wavenumbers and characteristic admit tances



(ky)

Az xtk

kr

Figure :3: Rotated spectral ';omain coordinate system.

given as

k k

< li

and1 _,: __

kh ~ t o- ~ /'y -h-~ - 7 A I 1I)

- Z •r ( , x

- ~~~l A, At( , ' k

and

SZ h rtolk0ltt

respectively, where k0 ,=;V,/-o00 is the wavenumber and rio = 01i11" the itrinsic

impedance of free space. Observe that at this stage of the development. Ole per-

rneability and permittivity (and thus also the anisotropy ratios) of the medium may

vary arbitrarily with z and are not necessarily restricted to be piecewise-constant, as

is the case in Fig. 2. The voltage V/" and current [ on the line with the propaga-

tion wavenumber and characteristic admittance given in (14.) specify the transverse-

magnetic (TM) partial field, while the voltage V-h and current I' on the line with

the propagation wavenumber and characteristic adnmittance given in (i5') specify the

transverse-electric (TE) part of the field. For the following development, it will he

convenient to also introduce transmission line Green's functions. which represent t b'

voltage or current excited by a ur it-strength voltage or current point source. Hence.

let V"P(zlz') and IJ(zlz'), where the superscript p stands for (. or h. denote the voltage

and current, respectively, at a point z due to a I A current source located at -' oil

the corresponding transmission line (cf. [27], [29]). It then follows that. thcse (Cree,'s



tittict.m,•s an, .ov\ertlw' v the ,mtip ,t' pt¶atimi,

d

/ -,kW" ;Yt ' .

where n--- is the l)ira delta. Similarly. let K :-& Iii It • l . ,t ,,-

and current. resp!ectiieIy, at : dcw toa iVI V •,tats- moirr•,•t ' I i k Mw Woolia!

these (;reen's tfhiction, satisfV 'quiations (la[ 0 1 ltha toi. whi 6 ! rt7 O , tWin& humI .

the latter by making thle suhstit ms V.,'-- , a n d. ". I • .
From their governing equations. it can also be shown that thl, four trautmi--ioni•1,i'

(;reen's functions possess t he, smnniet rv and reciprocity propert i,' p. 1¼ 1, .

V ý')= t / ( ) . ; lr ( .. .Z/' )',

Once the transmission line G"reen's functions are (lete(ined. t lWi V•t aIt ci ,urdnrr

at any point on the transmission line. excittd by an arbitrary. Ist rib• h, I voltaiwe

,v' aid current i"' may he expressed in terms of the sulnprpsitinm Ncl'iation,- id. '10.

p. 63]. (24, p. 193•j)

SP(Z / z d:' + z ,1(z:' 20
J .. .. . .:IzH'(z)d' f J i¾s : )t d.s' 20 >

In view of the unifOrrmity of the medium of Yig. 2 along the .r ;nid .y axes. the

dyadic Green's function in (3) possesses a translational symretry with respect to

the transverse coordinates. Consequently, we may write G rE ' = G'"Ip-p':::'.

where _iGE(p; zlz') may be given as

HeeE(p ___:) = F-1 s {Q '(t -o(; -; ep se Q in 21

Here 0 Eis th-pcrldmi ounterpart of Gr expressed in the rotated coop Ii-

Hee h pcrldmi



hiate svsteni of Hig. 3, and the dvadic operator

Q (, =(i -4- )I cos" - hor-nl- j.. fl"u

aid its transpose. Q'( C), are emiiployed to dlirect Iv i raiisforni ' f

spectral domain coordinate system to the 'pace doiiain. ('poi usilil 1h, t ,',.

tion relations (19) -20) in the Fourier-transformed Maxwell' ,I v iation w i ,:• d ili

6;1_ may be expressed in terms of the voltage and current trasisriisIon ti ( ;

functions as

-
1~k,: ~z) ii 1(A zz' +i~~>>:z~')- . 1 ,_£'( A;, : 2).:

* J2 ::' A>6 IT/,,, z.') + •v [ ;•(,7 , K!' - jA •oK

where the primed and unprimed parameters are evaluated at z' and z, respectively

a convention that will be in effect throughout this paper. unless the layer index is

explicitly stated. Observe that in the above we explicitly indicate the depenIPenie

of the transmission line Green's functions on the transverse spectral wavewiniier k;.

The isotropic medium form of GQE was previously given by Kastner et al. [27.

In view of the fact that no assumptions have so far been made regarding the de-

pendence of the media parameters on z. the spectral dvadic Green's function giveri

in (2:3) is valid, in particular, for the layered medium of Fig. 2. where the permne-

ability and permittivity are piecewise-constant. The corresponding transmission line

network is illustrated in Fig. 4. Observe that the original vector problem has thus

been reduced to a much simpler equivalent network problem. in which the individ-

ual material layers are viewed as uniform transmission line sections. where the 0t1

section has the propagation constant ký, and characteristic admittance I'l'. This net-

work analog actually comprises two networks-one associated with the TM and the

other with the TE partial fields-which have identical configurations. but differ in the

characteristic admittances and propagation constants. In the case of an unshielded

structure, where the top (or bottom) layer is of infinite extent along the z axis, the

10
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Figure -1: Transmission line network analog of the layered medin i.

corresponding transmission line section in the network analog of Fig. I also exTends

to infinity, where it is terminated into a matched load. The voltage and current

Green's functions for the network of Fig. 4 are easily found for any number of layers.

as discussed in the appendix.

We note that in view of (14)-(15), the transmission line Green's functions appear-

ing in (23) depend on the spectral variables k, and k. exclusively through 4-,. As a

consequence, when the double spectral integrations in (21) are performed in the polar

system (krp. ) illustrated in Fig. 3. the {-integrals can be evaluated in closed form.

More specifically, we find that

* -1•sinn{/(/) = (-)r SnnSnf(kp)k,}. n=0,1.2 (21)

where we have introduced the notation

S,ý{f(kp)} = 1jdk- f(k-)k-+",(k-p) (25)

In the above, (p, p) are the configuration space polar coordinates and J,. is the Bessel

function of order n. In this fashion, the space domain dyadic QE(p: zlz') may be

expressed in terms of the Sommerfeld-type integrals (25). To obtain QE(p-p': ,:')

required in (3), we replace p and p in (24)-(25) by d and o, respectively, where

d = arctan( ) , e = (x-.r')2 +(!j-') 2  (26)

II



Since only -G- will be neededl iII he followjii• dewcloQpeliiit, in II 111vl n t ue t re ,uv., V

we do not list the explicit fori of its space domain coir i1ram iierpart.

4 Development of the MPIE Formulations

Because (3) has the form of a convolut ion in tie transverse plane. it s Iurier i ra nr-,i , an

becomies

E(k: k) = -2

with GE given in (23). Similarly. the spectral domain counterpart of i7) is found as

- E(k,;_) A(k,:--I + V (k,:_) 2,S

in which

A (k; -) = J4(k-,; s'-(kp: :') dz' (2•,)

=(D z - V'GO(ko; zIz'). (k0: dz' (30'

where V = jk-±+i/Oz'" Comparing (27) and (28), we arrive at the relation
_dE d A .,) .(kP;.l, Z -, k

(k;- VVG (k: z,) (31)

which will serve as the point of departure in the development of GA and G• from GE

In what follows, we continue to use the rotated spectral domain coordinate svstem of

Fig. 3, in which four of the nine components of (GE are zero, as is evident from (23).

This and the fact that t and V" are orthogonal to the v axis greatly simplifies the

development. Hence, we immediately find from (31) and (23) that

(A = (A == G =(0 32)

and that the nonzero elements of "__GA and G6' are related by

12



- (.Li (;A -I

K)(;A ok(;,

For notational simplicity. we omit in the above an(l in Some e(uat ions Ihati olklow

the arguments of the spectral domain kernels. Observe that the svstern 133) (371 i,

underdetermined. because there are six unknowns, viz. tht, five cor ponent of

uuG,- - , vG?•" + uz(,Q + u + .. (3S)

and G , and only five equations. Consequently. we are free to impose an additional

constraint on (38)--for instance, we may choose one of the elements of Gd' to be zero.

Note. however, that there is no flexibility in choosing . In fact. it inirnediately

follows from (34) and (23) that

11,( kp z1') I z V (k- ,: ') (: 9 )

Below, we introduce three different constraints on the remaining four elements of dG
4

and explore the resulting MPIE formulations. which will be referred to as Formula-

iizns A. B. and C. following the terminology introduced in [9].

4.1 Formulation A

To arrive at Formulation A, we set

Gj'(kp; zis') =0 (100

1 3



It then follows front (36) that

which. in vieew of (16i). leads to

I/k' 
12

provided the field point is within a homogeneous material laver. I'poii ,•iin t he

above in (33). we arrive at

(k-)

Similarly. from (42) and t 35 ). we find

GA qA i1

"k v-k') 2 O:'

which, in view of (16) and (18), may be reduced to

C(Ak-, zjz') ko r;o0 (i 45)kUZ 4 C, vr(k,;)2 (

Finally. from (37) and (42). we obtain

'2e
(, (qo k-P ' I_•l ":
G,"4 = •,+ r10 65(-- ') + )16)ea

'zz "k~ m ke i' vc(kC) 2 U)Zaz'

which. upon using (16), (18), and the equation dual to (17). simplifies to

0/ k,( ; z I ') = •71 I'A-: :ý

We have thus determined all elements of GA in (38). as well as the corresponding (,u>.

To obtain the space domain counterpart of GA. we subject the latter to the inverse

14



15

Fourier transform in tie manner of (21) aitd use (2 t. wit Ith ie r,•iilIt

G--"(p::z s) = 7 =S,-< yh(A>' 2jz') + -v- I {k1,,:zzt}
I t h 4.,

-(ii Cos,,: + ý.Z sin ý) jkorl 1ii; I 'i)S,{~~i 1 :

+/- i 'tg# So{ I (kp: z I:')} I S

Similarly. the space domain counterpart of (; is readily found as

G'(p z So4 (kl': : 1zz')} It)(; (vl' --& ,(/,.) 2

Finally, in order to obtain GA(p-p': zjz') and G°(p-p': zlz') required in the MPIE

(10), we make the replacements ,, - d and p -4 o in (48) and (49). with i) and a

* given in (26). Observe that when the source and field points are within the same

material layer. GA becomes a diagonal dyadic and the xz and yz components of
GA vanish, thus resulting in a significant simplification of this MPIE formulation.

Note, however, that G0 in this formulation is a discontinuous function of z across any

* interface between dissimilar material layers.

4.2 Formulation B

To obtain Formulation B, we set

GCA(_ ; zlz') = 0 (5(3)

It then follows from (35) that c j,__70 i'i

Oz' - kot' (.lt

15
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which, in view of (16). leads to

(, -} I:'-) -. Z)

provided the source point is within a honiogeneous material laver, I-poun 01ii h,'

above in (33), we arrive at

A-2 I

Similarly. from (52) and (36), we find

(.4 = - o jkg 0 ;'
GA• -_o• 11 + ,,k,-, 0 1 f 5 1

YZU ~ ko-Z '(ke')2 idz

which, in view of (16) and (18). may be reduced to

,,oro (i ) I[(A,',: 5!')

Finally, from (52) and (37), we obtain

4~ = (qop VýrI
G®r"' = + b( z:)- + a56)-k-g-o] -oo'

which, upon using (16), (18). and the equation dual to (17). simplifies to

G".(k ; ( I-') z I z. l 1') (57)

The elements of •j as well as the corresponding G(. have thus been deterinrined.

I heir space domain counterparts are found in the came manner as in Formulation, A.

and take the form

-GA(p5 K.1') = =', &fr•rh(,.. :i:'\ +_'__--__ (::1'

__ 1,8 ,:I-,)+

16
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+ .r[.a -y) os 211+ (iý+) ýi0 ) sin 2,•ja,; 1,. S j"' '

____ ~k,:s'
-Cos +" i- s (i { i;'

+ zz i 10 -1So{fIlý( A-": :z)

and and (;'(p: ztz') = io{ :" ( l;z':)}

The remark following (49) also applies in the present case. Observe that when the

source and field points are within the same material laver. 6'." becomes a diagonal

dvadic and the zx and z-y components of G_' vanish, thus resulting in a significant

simplification of this MPIE formulation. Note, however, that (;* in this formulation is

a discontinuous function of z' across any' interface between dissimilar material layers.

4.3 Formulation C

To arrive at Formulation C, %e set

G (k.; z I') kp:1:') l k-(,p: "(w')

where we have used (39). It then follows from (33) that

G'(k•;zlz') = [ ( Z, ')- _ V (kp: 1 i')] (61

Upon using the above in (35), we obtain

" -,A 7 kg _ _ 1,- (62)

UZ k Ve,' k ozh'

which, in view of (16) and (18), may be reduced to

"G" ( k,;zIz') V'4, t ([k-.,; zIz') V- lk-( :Lz') (63)

17
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Similarly. upon using (61) in (36). we obtain

61;. = +~ j i) (v w
(,A k' z '

which, in view of (16). may be ceduced to

Finally, from (61) and (37). we obtain

-1 1 -- + - 6(z-)+ t -+ 6iv
6"C / 'koE'. k2I jOZO):\ 66

which, upon using (16). (18), and the equation dual to (17). may be expressed as

G:(kp, z Iz') -- t z lv~k-;h {.' - + -•:-I( ":z) (7

The elements of 6A, as well as the corresponding (,'. have thus been determined.

Their space domain counterparts are found in the same manner as in Formulation A.

and take the form

G A(p; z IZ') = L So0{f, (k.; zIz')}

- zi icos ýp+zýsin (p) Jo7jolitti "(-P ')-(.

I -PL'(

- (i i cos ýp+ ýi si n )jko qop' S, { ljj(k 3; zjI:') z)

L+O g;Ztz')+ -- + (6 ]8)
and /

18
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"The remark following (49) also applies in the present case. Observe Ihat (;':' in lii>

formulation is a continuous function of both z and :' across aiiy interface lt ween

dissimilar material layers.

5 Summary and Conclusions

We present a systematic derivation of three distinct mixed-potential integral eqilial ion

(MPIE) formulations, referred to as Formulations A. B, and C, for arbitrarily shapedl

non-planar conducting objects embedded in a medium comprising any number of

planar material layers of infinite lateral extent, which may be uniaxiallv arisotropic.

The development is carried out in the spectral domain, which effectively reduces the

original vector problem to a much simpler, scalar transmission line problem. The

spectral domain vector and scalar potential kernels of the three formulations have

explicitly been expressed in terms of the voltage and current Green's funct ions of the

transmission line network analog of the layered medium. It is found that the three

MPIE formulations are of similar complexity for arbitrarily shaped structures, but

for strictly planar microstrip geometries, Formulation C is the simplest and thus the

most efficient one. This formulation is also recommended when the conductor pene-

trates an interface between dissimilar material layers, in which case Formulations A

and B are not applicable, unless the MPIE (10) is augmented by additional contour

integral terms, as discussed by Michalski and Zheng [9], [10]. However. when the con-

ducting structure is confined to a single material layer. Formulations A and B become

attractive, because in that case two off-diagonal components of their vector potential

kernels vanish, which results in considerable savings in the computational effort. The

reader is referred to [9], [10] for a more detailed discussion of the properties of the

three formulations.

The advantage of the MPIE approach presented here is that it involves kernels

which are less singular and comprise faster converging spectral integrals than t he ker-

nels encountered in the standard electric field integral equation (EFIE) formulation.

Although th, MPIE is more complex than the EFIE, it is amenable to well-established

numerical solution procedures originally developed for scatterers of arbitrary shape

19
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in homogeneous media [1], [5]. The NIPIEL approach may riot be Ihe os)t ,flicieri!

one to use in the case of planar structures with simple, regular shapes. but it offers

the flexibility and accuracy that make it well suited for the alnalYsis of iolplalinar

and/or irregularly shaped microstrip transmission lines and antennas frequently en-

countered in modern microwave and ni'uimeter-wave svystems. lhe NIPE is alsuo ;

promising candidate for use in hybrid forniulations, which combine differential awid

integral equation methods [31], [:32].

A Transmission Line Green's Functions

Consider a transmission line section corresponding to the nth material layer of Fig. 2.

characterized by the parameters (1). Let this line section comprise a unit-strength

current source t. at z', as illustrated in Fig. 5. It then follows that the voltage IVj, and

current IF7 at any point z within this section obey the equations (16)-.17), in which

k= k, and 1"' = YP. From these equations. we find that VjP may be expressed in

1A kzn

Zn Z' Zn + f

Figure 5: Transmission line section comprising a unit-strength current source.

the traveling-wave form (cf. [24, p. 213])

(Z k) k2,, -[+ ,(ZO)ej2kz(z<o)f,[ ) ([0)
-- " :, r ,,--4.
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where z< in( z, z'). Z> = max(: ,' O is an arbIt rarv ref-ereic( p oI w It I I Ii
nth section (which is usually set to z-• or z.,÷•, whichever is more 'on voltient aw!-4-...4

Fn(oz) and Ir,,(So) are the reflection coeffirients 'looking to the left" anl ",oki,

the right.' respectively, at z0. By means of the t ranslat ion furounla

•(z) = n(z u) ).± 2ý7-:,> 1

where the upper and lower signs correspond to the right and left arrow-. respec.

tivelv, these reflection coefficients can be expressed in terms of the respeci ive lcr-ni-

nal reflection coefficients F, and F,. which are related to the corresponding terminal4,..- -.-

admittances Y' and Y. (see Fig. 5) as

' + I± n I+ rn

For a transmission line section of a finite length d,• a particularly convenient form of

(70) is

z e-,kz -z'l 1+ T= -j2k,,r(z<-z,) 1[ - 6 5-j2k-n(-:+l-Z-)1

n) I 2Y. F, F, f j2kz,~d,i

which is obtained by letting Z0=zn and using (71).

The remaining transmission line Green's functions can be derived from (73).

Hence, I,(zl-'), which is dual to 1,(zlz'), is obtained when 1;' is replaced by Z,,

in (73) (which causes the reflection coefficients to change signs), lj(zlz') follows from

(16) and (73), and VI,(zz') may then be obtained from the reciprocity relation given

in (18).

The voltage and current on the nth transmission line section that is source-frec

satisfy (16)-(17) with the delta function absent. From these equations. the voltago

at any point z within the line section may be expressed in terms of the voltage V( zo)

"21



across one of its terminal pairs. The result is

where 0= z:,, or 20 + (see Fig. 5 . dependini oin whet her the 'olirce 's o,'tIO('1 ,,,

the left or to the right, respectively, of the line section. and wheire t1liv ,ipper lw•

arrow corresponds to z > 20 (: < :O). \We have oimitted the sithscript. of I' in 71

because the latter applies irrespective of the nat utre of the source. an d dropp .• ' Iron

its argu ment, because (74) only implicitly depends on the source location. whiclt i-

outside the nth line section. The current l(z) corresponding to (7-t may be obtairned

by substituting the latter into (16).

Finally, we note that (71)-(72) are easily ilnplemented In a recursive compuler

routine to determine the leftward- and rightward-looking reflect ion coefficients needed

in (73) and (74). The computations proceed from the outward-looking reflection ,o-

efficients in the top and bottom transmission line sections (see Fig. 1). where they

vanish for unshielded structures or otherwise are easily determined. provided the sulr-

face admittances Ys.I and YS',N+I are known. Observe that the exponential 2, inctions

encountered in (71). (73), and (74) have nonincreasing magnitudes. so there is no

danger of overflow. When the nth transmission line section extends to positive (neil-

ative) infinity along the z axis, the reflection coefficient F' (I.) is set to zero in I7

and (74).

Acknowledgments

The author is indebted to Drs. .Joseph R. Mautz and ('hung-I C. i~su for their con-

structive criticism of the original manuscript. This work was supported in part by

the Office of Naval Research under Contract N00014--f)0-.J- 1197.

99



References

[1] K..K M ichalski. "A }h, ,lixe'd-imltmial ,.,.,,ic tich!~ ihllm mr;l q',u, knt Aqm Q 4•,t~,,

in lavere' Icd, iO. .tr(11. I/f Ak . I /"Utr-qunq. Iq •&L 39'. P. 117 32. Sl,. (Olt

t 9,75.

121 .. It. .'X,..itg. "\ArIhitrarilv sha5i pedt mi ,'t' rip ,t r ,n . ad Iui, ,I,.a i - x, V

a TIIiXC(I pot tial integral {(jLat iopu IWFH . ,ra . ilH ,rr,',a ' I/',,,,, I,,/ .

VOL. 36. pp. 3 11 323. Feb. I 9',s.

[3I R. F. H{arrington. Field (A,,mputation by /Ahlunt .1 ith,/ad,,. N ",rk: .aV,

Ian, 1 968, limerrinted by Krieger Pf)lishinI ('o.. Me.lbourne. FI.. 19%,2.

i11 A. XV. (Glisson and D. It. \Viton. -Simnple a:d etficiet il!1,rim;.i! mvIhdI-

for problems or eectromagnetic radiation and (-watterinn frn•,t -urfac -. ' 11"1
TO' An.. 1 nnas f.wrop,'pt.. vol. A P-2V pp. 5'93 603. S•lot 19•),9t

151 S. A. Rtaom 1). W \\ilton. and A. \W. (Nli>snon. "leh reimam1nt 4, satri'z t1w v r.

faces of arhitrary shap,. WE/. ' n.. .1 , (• nhnna r Awpaga., vol. AP-:W. f. HP)
11S. May 19,s2.

[6] .J. HI. Mosig and F. E. Gar(iol. -\ dynamical radiation model for nttir,,-t rip -'•tir-

t ores." in Adr. Eect/ron. Ehtrtron P/lys. (P. "I. lawkes, vd. . vol. T). pp. 139! 237.

New York: Academic Press. 1982.

[71 J. It. *losig. "'Integral equation tech niqi e. in .inu,,rial Mlnhqn,, fir Ali-

croinart and Millinicter- taver Pa•.sr, .5/rumcure.' iT loh. MA,. . pp. 133 21:3.

New York: Wiley, 1989.

[8 ,J. R. Mosig, R. (". Hall. and F. E. (6ardiol. -Numerical analVsis of m inrostrip

patch antennas." in Handbook of Alicrom.trip .Alnttnna/ (J. I. t amtesN and P. S.
[fall, eds.), pp. 391 -AL3. London: Peter Peregrinus. 1!)S9.

[9] K. A. Michalski and D. Zheng. -Electromagnetic scattering and radiation 1,x sur-

faces of arbitrary shape in layered media. Part 1: Theory." IE raI'r us.1 ife naul.,

Propagat.. voL. 38. pp. 335- :11-. Mar. 1990.

23



L-.I

[10] K. A. .Michalski and D. Zhieng. "Electro liaguettic scatterjring a;l(d jt un L

surfaces of arbitrary shape in ldveredi media. Part I1: lmphklent at oll and rý'Iilh

for contiguous half-spaces," IEEE Tir usalt. At, ns Propagyat., vol. P•. pp. 3 7)

352. *Mar. 1990.

[11] XK. A. Michalski and D. Zhenig. "Rigorous analysis of open microstrilp hi •i,,f

arbitrary cross section in bound arid leaky regimes, IEtE Ie '.,..llu, ine,,t'

Theory Tcch., vol. 37. pp. 2005--2010. Dec. 1989.

[12] N. G. Alexopoulos, "'Integrated-circuit structures on anisol. opic suIsTrales.

IEEE Trans. .MIicroware Theory Tch.. vol. MTT-33. pp. S-17 81, Ci. G 9s5.

[13] D. M. Pozar, "Radiation and scattering from a mnicrostrip patch on a initaxial

substrate," IEEE Trans. .ltrennas Propagat.. vol. AP-3S. pp. 613 621. blune

1987.

[14] N. W. Montgomery and D. R. Wilton, "Analysis of arbitrary conducting peri-

odic structures embedded in layered media." in Digest IEEE AP-S Int. s.,yp..

(London, Ontario), pp. 1889-1892, June 1991.

[15] D. Zheng and K. A. Michalski. "Analysis of coaxiallv fed microstrip antennas

of arbitrary shape with thick substrates." J. Electromaqn. l1av(s ..Appl.. vol. 5,

no. 12, pp. 1303-13271, 1991.

[16] K. A. Michalski and D. Zheng, "-Analysis of microstrip resonators of arbitrary

shape." IEEE Trans. Antennas Propagat., vol. 40. pp. 112-119. Jan. 1992.

[17] C.-L. G. Hsu, R. F. Harrington, K. A. Michalski. and D. Zheng, "'Analysis of

a mutticonductor transmission lines of arbitrary cross-section in multilayered

uniaxial media," IEEE Trans. Microwatve Theory Tech.. vol. -11. Jan. 1993 (to

appear).

[18] R. F. Harrington, Time-Htarmonic Electromagnetic Field. New York: \IcGraw-

Hill, 1961.

24



2.5

Tk]'. Sphicopouilos, \ orodoridis, arnd F. I%. Gard lol. I) vadic ( r'cel fiujicth! jun T'

thle elect romlagnetic field I n muh I ilavered isotro p IcI mediai: AllI operattor aIpproacI .�

ILL' Proc.. Pt. IL. vol. 1:32, pp. :329V-331. Atii. 1985.

[20] WV. S. \Veigthot'er. -Dvadic Green's funict ions for general ntinaxia! niedia.ýIL

Proc.. Pt. IH. vol. 137, pp. 5-10. Feb. 1990.

{21I] R. E. (i'ollin anid F. J1. Zuicker. eds.. Antui na i'hý ory - P1arl I. .Nw Yourk:

McGraw- Hill, 1969.

[22] J. M. Pond, C. M. Krowne. and W. L. CIarter. '*On thle apl~picat ion of' cornplex

resistive boundary conditions to model transmission lines consisting of very ti nn

superconductors," IEEE Trans. .Antennas Propagal.. v-ol. :37. pp. 181 AW'.~ Jan.

1989.

[2:3] J. Van Bladtel, Elect romnagn etic Fields. New York: Hemisphere. 198,5.73

[24] L. B. Felsen and N. Marcuvitz. Radiation and Scattering of 11ives. Englewoo'd

Cliffs, -N.J.: Prentice Hall, 197:3.

[2.5] T. Itoh, -'Spectral-domain immittance approach for dispersion characteristics of

,generalized printed transmission lines," IEEE Trans. Microirave Theory T~ch..

vol. MITT-2S, pp. 733-736. July 1980.

[26] L. Vegni, R. Cicchetti, and P. Capece, "Spectral dyadic Green's function for-

mutation for planar integrated structures," IEEE Trans. Antennas Propagat..

vol. 3 6, pp. 1057-106.5, Aug. t988.

[2?]1 R. hastrier. E. Heyman, and A. Sabban, "Spectral domain iterative anialy'sis

of single- and double-layered mlicrostrip antennas using the con jugate gradient

algorithm," IEEE Trans. Antennas Propagat.. vol. 36. pp. 120-1--1212. Sept.19.

[28] L. Beyne and D. De Zutter, "Green's function for layered lossy media with spe-

cial application to microstrip antennas," IEEE Trans. Micr'oiai'e Thtori1 Thch..

vol. 36. pp. 8T75-881. May 1988.

25



26

[29] M. Davidovitz and Y. T. Lo. -Rigorous analysis of a circular palclih antnna

excited by a microstrip transmission line." Il:' Irali.. ,nt hnwn.s lropayqI.

vol. 37. pp. 9419-958, Aug. N189.

L[30] P. E. Mayes. Elhcfromagnctics for Dn gin rs. )ept. of l1Ilectrical and (Coni•t pT,

Eng.. Univ. of Illinois. lirbana. IL: P. E. Mayes. 1 965.

[31] Z. Gong and A. W. Glisson. --A hybrid equation approach for Hhe solution of

electromagnetic scattering problems involving two-dimensional inhorno , nvois

dielectric cvlinders," IEEE Trans. Antennas Propa gat.. vol. 38, pp. 60 -68. Jan.

1990.

[321 X. Yuan, D. R. Lynch, and J. W. Strohbehn, --Coupling of finite element and

moment methods for electromagnetic scattering from inhomogeneous objects.-

IEEE Trans. Antennas Propagat., vol. :38. pp. 386-39:3. Mar. 1990.

26



Mixed-Potential Integral Equation (MPIE)
Formulation for Non-Planar Microstrip
Structures of Arbitrary Shape in
Multi-Layered Uniaxial Media

Krzysztof A. Michalski

Electromagnetics & Microwave Laboratory. Department of ElectricalEngineering. Texas A&M I-niversity, College Station, "Texas 71

Abstract

A straightforward derivation is presented of three distinct mixed-potential integral

equations (MPIEs) that are well-suited for the analysis of arbitrarily shaped. planar

or non-planar microstrip structures in multi-layered, planar. uniaxiallv anisotropic

media of infinite lateral extent.

1 Introduction

The integral equation-method of moments (IE-MOM) approach. implemented either

in the spectrum or space domain, continues to be the method of choice for the analysis

of open microstrip structures (see [1] and [2] for recent examples of the application of

these techniques). The spectral and space domain IE formulations, both being based

on the rigorous Green's function of the background medium. are formally identical.

and only differ in the order in which the integrals that arise are performed. When

applied to planar geometries, the spectral domain approach (SDA) results in very

simple expressions for the MOM matrix elements, which, however, comprise slowlv

convergent double spectral integrals. Consequently, to make this technique pra, tical.

a considerable effort is required to accelerate these integrals, and the initial simlplicity

of the formulation is lost in the process [3], [41, [5]. Although the SDA can in princi-

ple be extended to non-planar conductors, the space domain integrals that must be

analytically evaluated involve in that case the layered medium Green's function. and
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the development is tedious anrd resUlts in several spectral ]i iie,,rals tW, ealCh 111itti x

element, thus further complicating the acceleration procedlure.

The space domain IE is usually tirst transfornmed into a ui xed-poterittal tr in. in

which the electric field is expressed in terms of the v<ctor aiid scalar pot crIi i il. 1 ,,fo,,

it is subjected to the MOI [(6]. The resulting IE. which is oft en referred it IM lic .t--

ature as the inixed-potential integral equat ion (NIPIE) .'ir-. hit- it more ,,cimipica!'i

form than its spectral domain counterpart, but has many adlait , m.akimi it %,rv'

attractive, particularly for non-planar and arbitrarily shaped nicrost rip s0 r1rtiI*,r.

First, the MPIE potential kernels are less singular when the source arid olervati011

points coincide oA the surface of the object than the dyadic kernel of the ilandard I

electric field integral equation (EFIE) (in the SDA implementation of 1he EIC. the

severe kernel singularity of the latter is manifested by a divergent behavior of t he dou-

ble spectral integrals). Second. the MPIE is amenable to well-established nunierical

solution procedures [6], [9], [10j. [11] and---in contrast to the SD[A -- it only requires

single spectral integrals of the Sommerfeld type [12. p. 2.10]. which are inldependent

of the testing and basis functions employed in the MOM procedure. Third. these

Sommerfeld integrals are amenable to various approximation methods. such as the

interpolation and table look-up scheme [13] (see also [14], [1.5[). or the comn plex-iamOe

representation [16]. [17]. which drastically reduce the computational effort.

In a layered medium, different MPIE formulations are possible. as a result of the

non-uniqueness of the potentials. There are at least three possible useful choices of the

magnetic vector potential (or electric Hertz vector) associated with a horizontal time-

harmonic dipole [18], which also lead to different scalar potentials. Of the three vector

potential choices, the classical Sommerfeld's form [12, p. 258] (termed 'traditional'

in [19]) has been and remains the most popular and useful. Another form. lermetd

'alternative,' has been shown to have some advantages over the traditional onle in

the MPIE formulation [19]. As was first pointed out by Mosig and (ardiol [131.

the scalar potential kernel of the MPIE may be interpreted as the potential of a

single point charge associated with a time-harmonic dipole. In a layered medium.

the potentials associated with the horizontal and vertical dipoles are different ý191].

which poses a difficulty in the case of arbitrarily shaped. non-planar object s. becaulse
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only one scalar potential appears in the standard form of he l IPI. .A il,110•h, '1,
overcome this difficulty was tirst proposed by \lichalski f. IThe two f1rr o dt,

vector potential (traditional and alternative) and two scalar poi niolals (horitontal

and vertical) lead to three distinct MPI F formulations, which were Iirst •c•.vcopc,,l

and explored in detail by Michalski and Zheng [20]. [21].

The MPIE approach was first applied to planar [nicrostrip striictures wtI I isot rofpiC

substrates by Mosig and Gardiol [13]. Their formulation was later adopted by ol hers

[22]. [23]. [24], [25]. [26], [27] and was extended to multi-layered media 'I 11. '15] and

to electrically uniaxial media [28]. One of the MPIE forms developed in r201.- referred

to as Formulation C (which corresponds to the -traditional formulation' of [191). has

recently been employed to analyze coax-fed microstrip patch antennas of arbitrarv

shape [291. [30], [31]. as well as microstrip transmission lines of arbitrary cross-section

[32]. [33]. This formulation, which is based on the Sommerfeld's form of the vector

potential and the scalar potential associated with a horizonta, dipole. reduces for

planar microstrip structures with isotropic substrates to that originally developed by

Mosig and Gardiol [13] (see also [15]. [14]). A modification of Formulation C w,,as

adopted by Montgomery and Wilton [34] (see also [35]) for the analysis of arbitrary

conducting periodic structures embedded in layered media. For microstrip geometries

that only comprise planar and vertical components, such as coax probe-fed mnicrost rip

patch antennas. hybrid MPIE formulations have been developed, which utilize two

scalar potential kernels (associated with the horizontal and vertical dipoles) and. as a

result, require a point charge at the probe-to-patch junction [36]. [37]. [38). [391. [101.

A still different MPIE formulation has recently been introduced by Vandenbosch and

Van de Capelle [41].

The purpose of this paper is to present a new, straightforward development of

three distinct MPIE formulations (corresponding to Formulations A. [3. and C of 1201).

that are suitable for arbitrarily shaped. non-planar. microstrip st ruc ures embedded

multi-layered, planar, uniaxial media of infinite lateral extent.
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2 Preliminaries

Consider a medium comprising N planar, uniaxially anisotrropic laver> of infirite lat

eral extent. as illustrated in Fig. 1, The uith layer is characterized Lbv thle peinnitt iviTv

(z)

~~YS V .. .. . •" := Z N *

Z -Z3

ý -E ý , L 2Z = Z !

z Z

Figure 1: Medium comprising N\ planar. uniaxially anisotropic layers.

and permeability dyadics, f=, and M., of the form

where ft,, (Pt,) arid 'Ez, (/iz,•) denlote. respectively, the transverse an(] honghi•dinall

dielectric (magnetic) constants relative to free space. and I_ is the unit dyadic ras

verse to z. Observe that we distinguish dyadics by double underlines- and unit v'cto)rs

by carets. The free space permeability and permittivity will be denoted by 11() Mid (t).

respectively. For each layer, we also introduce its electric and rmagnetic anisolropy
ratos v'ad re spectively, given as

_ _Czn _____Z7n

= ttn tZZCn __ Ittn±ZZ~i



The top and bottom layers miay be of' iiifiiite oxtvin alongy hei iiaxi', or a1 i1hiT ra-

ted in Fig. I -may be shielded by grounld planles having Speci tied S1i rf1ce AIiili Iii 11

ces Ysv+I and V I respectively, where the iatter are infinite for perfect 1'!tci r!C

conductors (PEC).

Let an arbitrarily shaped PEC oh iect . whose surface .- fina\ lhe Ou)('i or clo',sc(. Ibe

embedded in the layered medi urn of Fig. 1. l'urt herniore. let E' deniot e t he Miiprese1 i

(primary) tlime-hiarmonic (the t--'~ timie convent ion is adopted hereý electric held I hilli

exists in the layered medium in the absence of the object . Wit 1i the object p)rese'nt.

0 this field excites on S the surface current jlý. which is the source of the scattered

(secondary) electric field. Thle latter mnay be expressed as

E(r) = J ý (p -p': z Iz') . J(r') (I>1ý

(GE J5'3)

where G E is the dyadic Green's function of the layered rie(Iiuifl. r and pdenot e.

respectively, the position vector and1 its projection onl the xy plane. and Where p~rime(s

are used to distinguish source coordinates. For later convenience. we have introduced

in (3) the shorthand notation (: ) for an integral of a product of two functions sep-

arated by the comma. The dot over the comma signifies a -dot product' of vector

arguments and the prime over ) indicates that thle integration is over the fpninwed

(source) coordinates. while the subscript S dlesignates the domain of integrationl.

The dvadic Green's function in (3) may be expressed as the inverse V'ector Fouirier

Transform (cf. [42]) of its spectral domain 'ouinterpart. (:E. of t he formi

GE (p-' _~ ' P, F1) {QT( . (kp: z Is Q

(r)IJQT"(fl G(k,,; zlIz') ' Q(fl c-k-(-' dk, dA'-

Here. k,~ and k. are the spectral domain counterparts of x and y. respectively, and

kp =;ikx+ýkv is tile radial wave vector. Based on kr, we introduce the rotated spec'tral

domain coordinate system illustrated in Fig. 2, where the unit. vectors zi andl ii are
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(ky)

zxk,

0 (kx)X kx

Figure 2: Rotated spectral domain coordinate system.

given as (cf. [43], [44]. [45], [46])

k xk

In (4). the dyadic operator

Q(f) = (zii +iy)cos + (viy- )sin +,ii (6)

and its transpose, QT(ý), are employed to directly transform G.E from the rotated

spectrum space to the configuration space. Upon projecting Fourier-transformed

Maxwell's equations on the rotated coordinates of Fig. 2, we find that these equations

split into two independent sets comprising. respectively, fields that are transverse-

0 magnetic (TM) and transverse-electric (TE) to z. Furthermore, it is found that

these partial fields may efficiently be expressed in terms of the voltages and currents

on two transmission lines along the z axis, with the propagation wavenuimbers and

characteristic admittances given as

6



33

and

0 Zh ijjokoj~t

respectively, where ko = wv/iL0(0 is the wavenumber and 7, = V/,')/f the MtriiC

impedance of free space. Observe that at this stage of the development, the r

ability and permittivity (and thus also the anisotropy ratios) of the miediumin may vary

arbitrarily with z and are not necessarily restricted to be piecewise-constant. as Js

the case in Fig. 1. In the above we have adopted +,e convention that the (1 liantities

associated with the TM and TE transmission line. ,e distinguished by superscripts

e and h, respectively. For the following development, it wi!l be convenient to also

introduce transmission line Green's functions, which represent the voltage or current

excited by a unit-strength voltage or current point source. Hence. let Vp(zlz') and

IP(zlz'), where the superscript p stands for e or h. denote the voltage and current.

respectively, at a point z due to a 1 A current source located at z' on the correspond-

ing transmission line (cf. [47], [46]). These Green's functions are governed by the

coupled equations

d-V'.(zlz') = -jkPZP Ii'(.zz')(9
dz
d I (zIz') = -JkPYP I7(zlz') + 6(z-z') (10)
dz

where 6(z-z') is the Dirac delta. Similarly, let i[V(zjz') and IP(z:J') denote the voltage

and current, respectively, at z due to a 1 V voltage source at z'. It then follows that

these Green's functions satisfy equations dual to (9)--(10). which are obtained from

the latter by making the substitutions V" -* IP, IF -- V1', ZP -- YP. and Y"P - ZP.

From their governing equations, it can also be shown that the four transmission line

Green's functions possess the symmetry and reciprocity properties [148 P. .94]

1'7(zlz') - ViP( z'z) If j(z I ) - I (--' IZ) V"P( 2)- -Jzz) (

In the rotated coordinate system of Fig. 2, the spectral domain dyadic dE in (4

may be expressed in terms of the transmission line Green's functions as (see also
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Kastner et al. [47])

- _E(kp: zi') ft t V'u (k,. z=t') + at,6 t, (k,": Zz')

- I2(A/,' z Ný) - uZ ik 12'

where 6 is the Dirac delta function. and where the primed and nnprini(d media pa-

rameters are evaluated at z' and z, respectively.--.a convention that will also he in

effect throughout the remainder of this paper. unless the laver index is explicilly

stated. Observe that in the above we explicitly indicate the dependence of the 1 rans-

mission line Green's functions on the transverse spectral wavenurnber A,. Since no

assumptions have so far been made regarding the dependence of the media paramne-

ters on z, the spectral dyadic Green's function given in (12) is valid, in particular, for

the layered medium of Fig. 1, where the permeability and permittivity are piecewise-

constant. The voltage and current Green's functions of its transmission line retwork

analog are easily found for any number of layers. as discussed in the appendix.

We note that the transmission line Green's functions appearing in (12) depend on

the spectral variables k- and ky exclusively through k-. As a consequence. when the

double spectral integration in (4) is performed in the polar system (A-.>) shown in

Fig. 2, the ý-integrals can be evaluated in closed form. More specifically. we find that

.F1-{sin-n~f( )}= ) sin - -S, {f(,k: )knr} , 0. 1,) 13)

where we have introduced the notation

S,•{~ko) = dk-, f (k-p) k;'+,(,.))

In the above,

,) = arctan, = (X-)+(Y-1.5)

8
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and J, is the Bessel function of order n. In this fashion. t he space nita n dlVadi(c G'

may be expressed in terms of tho Sonmmerfeld-type integrals ( 11i). It, expli, it formi is

easily found with the help of (4) and (13), but will not be required in hlie fullwin,.

development, and is not listed here in the interest of brevity.

XVith GE determined, the electric field scattered by the conducting ob~jec may
be found from (3). provided the surface current Js is given. \hen lie latter is not

known a priori as is usually the case. we may use (3) to formulate an IE for J", bY

enforcing the condition that the total tangential electric field must vanish at $..\ a

result. we obtain the EFIE

KA,; (GE: E),)

where {Ak} is a suitably chosen complete set of linearly independent vector weight

(testing) functions defined over and tangential to S. This EFIE. however. is not

suitable for a direct application of the MOM [6] because the dvadic kernel GE exhibits

a severe singularity when the source and observation points coincide on ; and the

Sommerfeld-type integrals that arise are slowly convergent.

When the spectral representation of _G'E given in (4) is substituted into (16) and

the order of the spectral and space integrals reversed, the latter may be evaluated

analytically, provided the testing functions {Ak} and the basis functions lsed to

represent Js are Fourier-transformable in closed form. This procedure leads to the
previously mentioned SDA, which has been popular in the analysis of planar mi-

crostrip structures. Unfortunately, the double spectral integrals associated with this

approach suffer from an extremely slow convergence and-except for simple. regular

geometries, for which the MOM matrix has a small size-the method is inefficient.

The difficulties encountered when the MOM is applied to the EFIE may be alle-

viated if the secondary electric field (3) is expressed as

E(r) =(G; J)' + N(GP, V (17)

in which V' operates on source coordinates, and where G__ and (;'. are referred

to, respectively, as the vector and scalar potential kernels. Blecause both potentials

9



ap.pear in ( 17). t lie latter is. termned the nilixed-potent ud reproserloaii~ul of' 'fi'd. t orP

field J{K., [43.1)pon using H L4). Instead1 of' (3). lit Owh procedure that led to t iw LV[

I 63), and applyinrg a Gauss' theoremn 15). p. 5~0311 WO weV rri Ie Itle A\ I'l~l'.

Ak iG` j5) /V,1. (. V'.< A:E"%

provid I is a c'ontimuous funcIti'on of' ac ross a nyi I Inteac )etW [We Ii %V01 d -'~Ti I 1 1r

mater jal lavers the object penetrates. Comuparinug IIhe EELF 1K (16 %%-11 wtihe Nl IlKIF

we note that in thle latter the dlifferenltial operator VV' has in effect 1ween eXtriwllt

from GE arid transferred onto Ak and Js [.35]. As a oji~sequence. I lit, kerniels G ' anid

G' appearing in the MPLE (1S) are less singular (or -less discontintuou, '50. Ip. [95!

than G E. and the resulting Sommerfeld-type integ-rals converge intore rapi liv. (lear1 v.

for this equation to be applicable, the testing functions and the !basis funictionis uised

to represent J5 must be at least once differenitiable--a reqIuiremenet I fiat c-an easilY Ibe

accommodated [10]. Finally, we note that (1S) may, readlily be extended to linrperfec

conductors via the surface impedance concept [8]. [TS].

*In the next section, we employ the spectral dyadic givern nI 12) as the po~int

of departure in the development of the vector an(I scalar potential kernels. G" ail'i

G', respectively, associated with three distinct MPIE formulations, for rnilti-layer,;ed.

planar, uniaxial media of infinite lateral extent..

3 MPIE Development

The development is carried out in the spectral domain and It. proceeds fromi the

0 ~spectral electric dyadic Green's [unction G £ given in (12). First. we ad~d t o and

subtract from (12) the term tili Vh (k-,: :I ') and recogtnize that fii i-,6i= I, N ext.

we observe that Vt = -Akfi, where V~is the spectral domainl coun1terpart of V-- the

transverse (to z) part of the operator niabla. and] that jAt.As at results of thecse

0 ~steps. we ob~tain

~-l;(k, It A1

01
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with the identitY

- 4 )' 41: " (I: (I

to express __ in the forin

tG'k_ý zz' rGi t. k:':-, VVG(f k -. 21 t

which fin the space domain becon)'1s

- Q (p-p': z;:') =_G"(p-p': zý VV''(:'(ip.p-p'; < 22

Vpon using the above in (3) and appealing to th• •14 ,liweenc theorein . p. 5iJ•.

we arrive at the mixed-potential representation of E ,liven in I7 provided, (;' i

continuous furiction of Z' across any interface bet'ween dissinilar material law'vrs 1h4'

object penetrates, which then leads to the' (•esire•i MPII11I).

The decomposition of Ga according to (21) is not unique and leads to di fferent

MPIE forms. depending on the choice of C'_" and ( B. l]elow. we devc1op thre,,

distinct MPIE formulations that have been found useful in MIO)M aonalvses 4)f the

radiation, scattering. and guidance of electromagnetic fields by arbitrarily shaped

conducting structures in layered media. In the intere'st of brevity. sonie delails of

the derivations--which repeatedly invoke the equaItions (!9) ()10) and their duals, as

well as the reciprocity and symmetry properties (11) of the transmission line- Green',

functions--are omit ted.

lI
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Formulation A

By invokiug the properties oft th t transmiIssIon line( (;rvi!'n' ft I iotp. we. WC 1 x preý>>

(19) as

-___E(/ki zz) =It 1TihA/,: zis') - VV A>/• ZZ:) - I'•:-:1]

L

+ +' dd\('(A')zz')

provided the field point is within a homogeneous material layer. The form of t he

above suggests that w, may choose

G°(k ; ::') •;(/<o =l') 21)

as the spectral domain scalar potentiai kernel (this choice corresponds to Formula-

tion A of f201). Next, we make use of the identity (20) and combine terms in 21' o

arrive at (21). in which

cjA(k; zZ,) = It 1 7 h(* zl,')

_ • ,, •i(•,;:(K) •g,• A?('/: l

v ([�:'7'(k ; it') •- ( .kz I' Z:')

+ vSZJko7 o1 ( ..- .,>: I(k) + 10- •25)iJ•k•iz')"2-)

The space domain counterparts of (25) and (24) are found as

GA(Op-p; ZlZ') =L So{1Kh(A~: I1 + (0/5) v.e(kp: :lz')

l[(••_y0cos )+<i:•+Oi) sin 9l&] •. '7h(k•:sIJ) _ -I;I/,, I:(,5:iA ')

- a•.co 0 +yz'sintI)Jkor~oII V, I$ Au(k)

12
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2 Iill+ zzi r 0 -Sol1(k;: zi')} 2I,

and
G` (P- P': iz ) So R ,(,.: Z)•

respectively, where we have used the notation introduced in ( 13 1 ). Observe fhat

when the source and field points are within the same material layer, the .rz ai(d .q:

components of GA vanish, thus resulting in a significant simplification of this.IMPIF

formulation. Note, however, that G6 in this formulation is a discontinuous lurncilion

of z across any interface between dissimilar material layers.

Formulation B

Upon using the properties of the transmission line Green's functions. we may also

express (19) as

--G E ko =z__ - =t ,h k : zlz') -- Tt i' g (k-,: z" I ')K)2 V1, k,: zI= )

-
I t Vk 0k,2

* ~ ~ ~ ~ ~ ~ ~ 1 -I -1)~z~~ +i ii~p~~f -2P ~~[hk: II) k

jkoe, fzi--J(~i'

*+- (V + O '(kP,)1 (2s)

provided the source point is within a homogeneous material layer. The form of the

above suggests that we may choose

0 ' (kI; zI z') -(29 vfl'(k:1)2

as the spectral domain scalar potential kernel (this choice corresponds to Formula-

tion B of [20]). Next, we make use of the identity (20) and combine terms in (28) to

obtain (21). in which

(jiA(kp; ZlZ') = 1 Vh(k.; zIz')

1:'
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t" . z ,zI - ( A• : z.z').

, -- )) IL(kf1) + to A

In the space domain, (30) and ('29) become

A (p-p': t) It soi("( ); +. z) ° (4: 1'7'(G -(k. )2 I I

+ - _i))cos 2id+(y+ i) sin 2JS2 h( )I)

- (iicosj + ifisind)jo'oUt(0t - "v) s{'2'(,7j)}

*,,So {It(k 0 ir1')} (31)

and

GO(p-p': z:[') = o ,(k,) (32)
ve(kcI)'2 J

respectively. Observe that when the source and field points are within the same

material layer, the zx and zy components of GA vanish, thus resulting in a significant

simplification of this MPIE formulation. Note, however, that G' in this formulation is

a discontinuous function of z' across any interface between dissimilar material layers.

Formulation C

The form of (19) suggests that we may also (hoose

Go(k.; zIz') = Vlh( k; zlZ') - V (k,; zI:')

as the spectral scalar potential kernel (this choice, which was previously used in [2S1

for a planar microstrip geometry, corresponds to Formulation C of [20]). Next. we

1.4
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make use of the identity (20) and combine terms in (19) to obtain (21 if) whi jch

k-t,[ ( : z')') = zt17z' )] :!-'
+ tti Jk-o toi p'

+ q 2 /tI , P ( 4 -: z F') + 1+ V k ':
zzr0 ~, jj~(A, ) l' I~ t± - I A f

The space domain counterparts of (34) and (33) are found as

G"-(p-p':zlz') = I ZSo{l) (k:z P}

- (ii cos + . sin J'(k); z ') - I(k: - ')}

-(;i~i cos +ýi sin )Jkorop {f'S(l zlz') -V' ('p: z'}

p (t so{ (Ijk,: :-z') + -+ W- - P (A,:k

and k.-
and G(p-p', zfz') s.o{ /:-' z,')- S • zz')

respectively. Observe that GO in this formulation is a continuous function of both s

and z' across any interface between dissimilar material layers.

Discussion

Although the three MPIE formulations are of similar complexity for arbitrarily shaped

conductors, Formulation C is the simplest (and thus the most efficient) one for strict lv

planar microstrip geometries. This formulation is also recommended when the c-on-

ductor penetrates an interface between dissimilar material layers. in which case For-

mulations A and B are not applicable, unless the MPIE (18) is augmented by addi-

15
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tional contour integral terms, as discussed by Michalski and Zhlieri (121. llowvvr.

when the microstrip structure is confined to a single material l]a'r (as is often cIle

case). Formulations A and B become att ractive, because in that case two oft-diagonal

components of their vector potential kernels vanish. which may result in significant

savings in the computational effort. Th- reader is referred to i20'. 211 for a more

detailed discussion of the properties of the three formulations.

4 Conclusion

A new. straightforward development has been presented of three distinct Imixed-

potential integral equation (M PIE) formulations for non-plariar. arbitrarilv shaped

microstrip structures embedded in planar. laterally open, multi-layered. uniaxial me-

dia. These MPIEs may be used in conjunction with the method of moments to ana-

lyze three-dimensional microstrip discontinuities. such as transitions between printed

traces on different levels, vias. air-bridges, bond-wires, etc., as well as microstrip patch

antennas with shorting pins and coaxial probe feeds.

A Transmission Line Green's Functions

The transmission line analog of the layered medium invoked in Sect ion 2 comprises two

transmission line networks-having identical configurations. but different propagation

wavenumbers and characteristic admittances-associated with the TM and TE partial

fields. In each of these two networks, a homogeneous material layer of the medium

of Fig. 1 is represented by a uniform transmission line section. In the case of an

unshielded structure, where the top (or bottom) laver is of infinite extent along the

z axis, the corresponding transmission line section also extends to infinity. where it

is terminated into a matched load.

Consder a transmission line section corresponding to the nith material layer, char-

acterized by the parameters (1). Let this line section comprise a unit-strength current

source i at J, as illustrated in Fig. 3. It then follows that the voltage V7` and current

1P at any point z within this section are governed by (9)-(10). in which k=

16
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0I

n RIPYnpf<

* iJ ,,I_..

1A k~zn

Zn Z'+ 1

Figure 3: Transmission line sect ion comprising a unit-strenLyth current source.

and YP = }'Y, where the latter are obtained by substituting the matem ial parameters

of the layer into (7)-(S). From (9)--(10). we find that. Xin may be expressed in the

traveling-wave form (cf. [48, p. 213])

•i~zjz' - jkz-• -,I -:'j 1+ F,(ZO)(,-j•kz:.(<-_-o) 1+ F(o••• •> " 4(37

where I< min, )(z,) F

where < =min(-, z'), z> max(z. z). zo is an arbitrary reference point within the

nth section (which is usually set to z, or z,+,, whichever is more convenient ). and- 4,- -

F,•(zo) and [,,(z0) are the reflection coefficients 'looking to the left' and 'looking to t he

right,' respectively, at zo. In the above and in what follows, we omit the superscript

p for notational simplicity. By means of the translation formula

F((z) = e

where the upper and lower signs correspond to the right and left arrows. respec

tively, these reflection coefficients can be expressed in terms of the respective ternii-
-4-- ----

nal reflection coefficients G,• and 1,, which are related to the corresponding terminal

admittances V and Y-7 (see Fig. 3) as

Fn Y- •;f I'1- (T
Yn •+ Y71, + I",

17
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IFor a transmission mine section of a finite lerngth (1, a part icIIlarl y (,(ve)I i, n fturf I I

(37) is

l~izz.') • -A.i:,,!I-z' I f1+ l',, •-- z<''(<-z:")j L+ l ',,!'... L- , In,

which is obtained by letting z0 = z, and using (38).

The remaining (;reen's functions can easily be derived from (-40). hence. I., z').

which is dual to lj(zlz'). is obtained when }Y, is replaced by Z, in (40) (which ,ause.s

the reflection coefficients to change signs). I,(:Iz') follows from H10) and (19). and

VI.(zlz') may then be obtained from the reciprocity relation given in (I1).

The voltage and current on the nth transmission line section that is source-free

satisfy (9)-(10) with the delta function absent. From these equations. the voltage at

any point z within the line section may be expressed in terms of the voltage -(z0)

across one of its terminal pairs. The result is

'V(:) = V(zO) + C-2kd, (-+1)
1 + [,' .

where zo=z, or zo= z,•+I (see Fig. 3), depending on whether the source is located to

the left or to the right. respectively, of the line section, and where the upper (lower)10
arrow corresponds to z > zo (z < zo). We have omitted the subscript of V in (,41).

because the latter applies irrespective of the nature of the source. and dropped Z' from
its argument., because (41) only implicitly depends on the source location, which is

outside the nth line section. The current I(z) corresponding to (-1) may be obtained

by substituting the latter into (9).

Finally, we note that (38)--(39) are easily implemented in a recursive computer

routine to determine the leftward- and rightward-looking reflect ion coefficients needed
0 in (410) and (41). The computations proceed from the outward-looking reflection co-

efficients in the top and bottom transmission line sections. where they vanish for

unshielded structures or otherwise are easily determined, provi(ed the surface admit-

tances I's, and V5.N+1 are known. Observe that the exponential functions encountered

18
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in (3S). (40). and (-41) have nonincreasing magnitudes, so there is no danger of over-

flow. Wlhit thc rth transmission line section extends to positive (negative) infinity

along the : axis. the reflection coefficient F, (l',) is set to zero in (40) and HI).
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RCS COMPUTATION OF COAX-LOADED MICROSTRIP

PATCH ANTENNAS OF ARBITRARY SHAPE
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Abstract

A space-(iomain mixed-potential tintegral equation approach 1, appliedI Mn conuttiwilOll
with the met hod of moments to compute the radar cross,-sect ionl{( CS1 of c(dN-
loaded ailcrostrip patch antennas having arbit rary or irregular shape,;. The elfect
of the substrate- -which may be elect rically t hick and may consist of amy number of
planar, possiL'ly uniaxially a~nisotropic dielect ric layers, backed 1)' a ground planec are
rigorously in~orporated in the analysis by mneans of the vector andi scalar piitetitial
Green's functions. The latter are expressed in terms of the voltages and] currentý
on transmission line analogs of the layered medium. associated] with TM% and 'II-"
partial fields. The current distribution on the microstrip patch is approximated usiniti
vector b-i.s functions defined over triangular elements and the coax probe ('icurren
is expanded in terms A piecewise-li near subdornain basis fu~nction's :\ simpleI 1)rohe1-
to-patch attachment mode. compatible with the triangular element inodel of' the
microstrip patch. is used to enforce current continuity at theujunction, anid the coax
aperture is modeled by a magne tic current frill. The fa oe.1lsaefun i i

stationary' phase method, and are expressed in terms of the Fourier-i rawsfornwd ais
functions and the transmission line voltages arid currents evalutated at the stiat jonary
phase point value of the transverse wavenumber. C'ompuited R('S re~sults are presented
for several loaded and unloaded rnicrostrip patch antennas of various Shapes awd art.
shown to be in agreement with published mneasured data and] withI coniplte(l results,
obtained by specialized techniques, which ---unlik-e the miet~hod presenited here are
not easily extendable to arbitrary shapes.
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1 Introduction

The radar cross-section (RCS) of rectantgular Iicrost rip p)at Cl anll (11&as %;t., firt T to t

led by Newman and Forrai [11. who used a spectral domain i tnt'rzral cuat Hor tle lihftjf

and validated it by measurements. Pozar [2] used ia similar approach. cmx ended to I 11o

case of a uniaxial substrate and combined withi art idealized feed illodel. t o ctliput

the RCS of both loaded and unloaded rectangular patch antennas. Jackson 'I3 i

vestigated the superstrate effects on the RCtS of rectangular rnicrostrip patches. ;i&o

using a spectral domain integral equation method. Aberle et al. [11 corpiedt lihe

RCS of loaded and unloaded rectangular and circular patch antennas usingl a spect' ia

domain integral equadion technique incorporating a rigorous feed tnodel. aind corrobo-

rated their analysis by measurements. More recently. King and Bow [51 used a similar

approach to compute the RCS of finite arrays of rectangular micros! rip patch anten-

nas. The RCS of cavity backed. loaded and unloaded microstrip patch antennas and

antenna arrays was studied bv Jin and Volakis [61 using a hybrid approacli conbining

finite-element differential and integral formulations.

In this paper. we present an RCS analysis of coax-loaded microstrip patch alitvnnas

of arbitrary or irregular shape. residing in a grounded dielectric substrate of infinite

lateral extent. The analysis is based on the mixed-potential integral equation formu-

lation in conjunction with the method of moments (MOM) [7] uilizing a triangular

element model of the patch. In this approach, which was pioneered by Pichon et a1.

and adopted by others [9], [10]. [11]. [12]. [13]. [141. [151. [16]. 117. the effects of the

substrate and superstrate (if present) are rigorously taken into aiccount by t,,anw, of

the vector and scalar potential Green's functions. The latter are expressed ill t'rms

of the voltages and currents on transmission line analevs of t lfie, kiavrd Tnedtnl;I

sociated with TM1 and TE partial fields. The current (listrioit ion ,i• e it mir r i)-pi

patch, which may have an arbitrary or irregular shape. is approxm,,t..., ir term, )f

vector basis functions defined over triangular subdomatits I, . ih t .,h}erate and

the cover laver (if present) may be electrically thick and UIniaxiallv at1111t r,,nII, l 11P

current on the coax probe is expanded in terms of piecewise lintear 'ii,,(Iontaimi basis

functions and the coax aperture is moldeled by a magnetic current frill 1 1" 12. A
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model of the mnicrost rip patch. is nImpleerneted to oH tor~c ti irreit curt iunt ati ith

junction. The far zone fields art- fouind by the stat ioniary phlaseý ri ethod. and ilare x.

pressed in terms of the Fourier-i ranstorrued b~asis funcHtions andl th it rartiP,.iol~i~i 1111fe

volt ages and currents evaluated at thle 0lat iou arv phase- polil %iti vau of I Ieo I ai V rt

waventumber.

The remainder of this paper 1s organized as follows. InI Sect ion 2. it coupl )ed ci

of mnixed- potential integral equatilions for the( currents Indulcedl ol at coax-11loaded iii

crostrip patch antenna Is formulatedl. AlIso. thle coax load miodel Is deveclopeil anid ', lie

formulas for the far fields andl R(CS are st ated,. [he formulat ion consisten'itlvy empjlov'-

a transmission line analog of the layered mefdiumn andl Is thus direct ly applicable io

antennas with any number of layers. The relev-ant details of the t rausrmissiýon lineO

analysis are enclosed for easy reference in Appendix A. The nunvwrical procedunes

are described in :onisiderable detail in Section 23. Including thle coax prolbe- to-patch.

junction treatment. The approach relies heavily on concepts dev-eloped I)Y the fiinite

elements community to efficiently organize the computations arid the assenllivl of lie

resulting matrix equation. The Fourier transformis of the shape' functionls e'iiCOUnl-

tered in the far fields computation are giv-en in closed form, with the detadis of the

development relegated to Appendix B. In Section 4. samplIe computed RC S resultlý

are presented for several loaded and unloaded rectangular and circular inilcrost rip

patch antennas and are shown to be In agreement with p~ublishedl measured data andl

with computed results obtained by specialized techniques, which un-itlike the method

presented here-are not easliy extendable to patches of arbitrary shape. New RC'S

results are also included for a coax-loaded pentagonal milcrostrip patch antennla de-

signed to radiate circularly- polarized field from a .-,ngle feed. Finally, the sumniarvy

and conclusion are given in Section .5.

2 Formulation

A. Problem statement and assumptions

The geometry of the problem tinder consideration is illust~rated Iin Fig. 1. where Ii.'

:3
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microstrip patch plane wave
(top view)

feed point

Et3, Ez3

Et2, EC.2

t-, E - -_patch
,-coax probe

2b- - -ground plane

2a

Figure 1: Geometry of a coax-fed microstrip patch antenna.

dielectric layers, which are assumed to be nonmagnetic. are characterized by their

transverse and longitudinal dielectric constants, ct, and ,. respectively, relative to

free space, and anisotropy ratios v, = ./,. If dielectric losses are present. ct, and

c,, are multiplied by (1-j'tan 6,). where tan 6, is the loss tangent of the rith laver.

(Here and throughout this paper. the elt time convention is implied.) The layered

medium, which may consist of an arbitrary number of planar layers. and the ground

plane are assumed to be of infinite lateral extent. The coaxial probe. which has the

inner and outer radii a and b. respectively, is centered at (x,,. y). The patch. the

ground plane, and the probe are assumed to be perfectly conducting.

By invoking the equivalence principle [20]. the original problem of Fig. I may be

replaced by its equivalent, shown in Fig. 2. In the latter, the conducting patch and

the coax probe are replaced by equivalent electric currents. J, and I. respectively.

Also, an equivalent magnetic current frill, M, is placed over the coax aperture. which

is shorted. To simplify the analysis, we assume that the distribution of the aperture

electric field is that of the TEM coax mode. We further assume that the coax probe

current is z-directed and is azimuthally invariant on its circumference. The st rengt h
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S(top view) plane wave

S

cts, ECz3

JS

7t.2 E, M9 S

*L ~tflI i

tground plane

Figure 2: Problem equivalent to that in Fig. 1.

of the magnetic current will be related to the load impedance. ZL. and to the value of

I at the base of the coax probe. As a result., the patch current, J,. which resides on

the surface S and represents the vector sum of the currents that exist on the bottom

and top sides of the microstrip patch, and the total z-directed coax probe current. I.

which is uniformly distributed on the perimeter of the cylindrical surface C. remain

the basic unknowns of the problem. Once these currents are found, other quantities

of interest, such as the far fields and the RCS of the antenna, are readily determined.

B. Integral equations

Since Green's functions for the layered medium of Fig. 2 are available, the electric

field produced by the coax-fed patch may be expressed in terms of integrals over the

as yet unknown currents J, and I, weighted by the appropriate kernel functions. The

fields excited by the plane wave and M, can also be easily determined. A coupled set

of integral equations for J, and I may then be obtained from the condition that the

total tangential electric field must vanish on the patch and the probe. On the coax

probe, since I is assumed to be azimuthally invariant, we only enforce the vanishing

of the z component of the electric field, averaged over the probe circumference. In

05
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what follows. we use the following notation: r is the position vector of an arbit rary

point with respect to the global coordinate origin. p is the projection of r on I he hr

plane. p. is the radial position vector of the coax probe axis. prines denote source

coordinates, unit vectors are distinguished by carets, and the subscript -, denotes

components tangential to S.

Upon using the procedure described above, we arrive at a coupled set of intetral

equations for J, and IL which may be expressed as (the details of the deriva% ion are

omitted here due to lack of space)

fs Ac(rIr')J,(p') dS' + V7L cG.(rIr')V;. J,(p') dS'

+ & IzrzIz') d I) (z'
eICk fzIc~d dz'

- RE•(r)= E r) rE.; 1

J8 (p' �dS' f g.(zlr,)V3 . J,(p') d,'
d ~' +dI(z' dz'

+ )Cfz ( I z) I'z)--- + f-d

-E(z) =$(z), E C (2)

where 9, p-p, o, = p,-p'. and where the script symbols are used for quantities

averaged over the coax probe circumference. The kernel functions in ( t1 2) may be

expressed as

G4 l') = *'j (k., zjz')Jo(k,,jp-p'I) k, ilk-,3

G6t(rr') - I :')J0(k-Ip-p'l) (i)

K *(rjz') = ' 0' 0jQ(k:;zlz')J°(kt)j(kp-p)p-j-p (5)

Ix,(rlz') = P°•j• (k; i-;z').Jo(k-a)J,(kAp-p,-I) ()

6



57

k:.o(zIz') = -• P t/>(kA: zlz').J.I (A•a) l 4(, tIA> k,

A2Izlz') , A , dA'--

P A-P: 1 W

in which .1, denotes the Bessel function of order n. A- is the spectral wavenliridwr

variable corresponding to p, and where r;o = -- /0 and k4 = ' /10% are the intrinsic

impedance and wavenumber of free space. The Jo(kAa) factor appearing in the above

equations is the result of averaging of the respective integral kernel over the moax

probe circumference and the application of Graf's addition theorem [21. p. 36:31. In

(4)-(10), we have introduced the auxiliary functions

P(k,; zlz') = zlh(kp; zjz') - I'(k0:-Iz') I)

Q(k,; zlz') = Vjj"(kp; zlz') - :•z(k;; z') (12)

R(k,;:Iz') = liP(kp: zlz') - /•'(Ao;zlz) 13)

S(k-P: zjz') = (Ik : Zl') + ( 0 ) 1  (A.":.j 1.1

where e, and f' denote the longitudinal dielectric constants of the observation and

source layers, respectively. This convention is in effect throughout this paper. unless

the laver index is explicitly shown.

It is important to note that the integral equations (1)-(2) are in the mixed-potential

form [22], [23]1 [24], [25], which is amenable to the existing numerical solution proce-

dures developed for scatterers of arbitrary shape residing in a free space 1!s. "26].

C. Transmission line network analog of the layerecd medium

As an aid in deriving (3)-(10). we have employed a transmission line network analog

of the layered medium. in which each layer is represented by a transmission line sec-

tion, as illustrated in Fig. 3. This analog comprises two networks. which arise from

the decomposition of the electromagnetic field into partial fields that are transverse-

07
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z match
T T

Ct3, Ez 3  Y3' k~p.

cu 2 , Cz2  Y2 kz

CtI, Czy Y< k'1

Zground plane short

Figure 3: Transmission line network analog of the layered medium.

magnetic (TM) and transverse-electric (TE) to z [27. pp. 185-217]. The quantities

corresponding to the TM and TE networks are distinguished by the superscripts e

and h. respectively. The characteristic admittance and propagation constant of the

nth section of the TE and TM transmission lines are given, respect;vely. as

,h = o k , = _h-k2  (.52

and ko c ,,

where the branch of the square root function is determined by the condition that

kP be positive when it is real-valued, or that A{kP,} < 0 otherwise. Here and in

what follows, the superscript p stands for e or h. For each transmission line network.

we introduce the Green's functions 4p•(kp; zjz') and I/'(kp: zlz'), which represent the

voltage and current, respectively, at a point z. excited by a unit-strength shunt cur-

rent source located at z'. We also introduce the Green's functions 'P(A z-z') and

IJ(k0 : zlz'), which represent the voltage and current, respectively, at a point z. ex-

cited by a unit-strength series voltage source located at z'. These four transmission

line Green's functions, which can easily be derived by network theory methods, are

discussed in more detail in Appendix A.

8
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Note that the integral equations () (2) are valid for a medi ut wvit h an arbit rary

number of layers, provided the appropriate t ransmission line (;reen's functions are

used in (:1)-( 10). Also, it can be shown that the kernel functions appearing in (1) (2)
exhibit only mild singularities when the source and observation points coincide on

S and C. which makes these equations particularly amenable to numerical soliition

procedures.

D. Coax load rnodcl

\Xe assume that the aperture field in the problem of Fig. I is that of a TEM coax

mode with a voltage

I = ZL IL (17)

where ZL is the load impedance presented to the antenna by the coaxial transmission

line and IL is the load current. In view of this assumption. with respect to a polar

coordinate system (o. d) centered at (x,, •.) the magnetic surface current M.A, in Fig. 2

has only a ) component, given as [20, p. 112]

K ZLM,9(o) = 'L'• ;- (IS)
_D ln(b/a)

in which a < o < b. The electric field excited by this magnetic current frill embedded

at z•z" in the layered medium, which appears in (1)-(2), can be expressed as

E (r) = IL T(p) ) 2(z) = ILt(Z) (19)

where, for notational convenience, we have introduced the auxiliary functions

T(p; z) = K1, ,kp;zlz') Jo(k-a)-Jo(k-b) Ji(k/plp-p,)dk,' (20)

11(z) - j.I1(k zIz') Jo(kPa)-.Jo(k~b)]Jo(kou)kP (21)

The second Jo(k-a) factor in (21) results from the averaging of E' over tLe coax

probe circumference In the case of a short-circuit load (ZL = 0) the magnetic current

frill is absent. In the other extreme, when the antenna terminals are open-circuited
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(ZL = .-ýC), the frill is absent as well. but we impose the condition If. = 0 in Ihe soluition

procedure. For any other load, IL is not known a priori and must be computed

together with J, and I. Note that (20)-(21) are in a general form applicable to a

medium with an arbitrary number of layers, providod the appropriate transnission

line Green's functions VIP1 and V• are employed (see Appendix A).

E. Incident field

The structure of Fig. I is excited by a plane wave field

EinC(r) c( + i,2) ejko[p sin 0, cos(.-o,)+(a--d cos6,1E OjE ' + cý,E ,: ('2"21

incident from the direction (06,yj) on the grounded layered medium from the upper

half-space, which is assumed to have free-space parameters. Observe that in (22) the

phase reference point is chosen on the z axis at z = d, where d specifies the location

of the uppermost interface. The plane wave (22) is the source of the 'incident* field

appearing in (1)-(2), which may be expressed as

E,'(r)= [ ' V"(k2; zId) +± V Vh(k,; zid) eJ'kP (23)

E -'z 2 sin O Ic(kh;zId) Jo(k-,a)e-Jk-P, (21)

where the direction of the unit vectors Oi and 0j, and k. = pIk2. with k-,' = k0 sin 0,.
are specified by the direction of arrival of the plane wave. In the above. VP and IP

denote, respectively, the voltage and current on the corresponding transmission line

network analog of the layered medium (see Fig. 3). excited in the uppermost section

by the incident voltage waves

V(z) = cos 0i E nce ko°--d) cos (25)

-_r h E.7. ejko (z-d)cos° (26)

propagating in the -z direction. In (23)--(24), we explicitly indicate in the arguments

of VP and P their dependence on k' and on the phase reference point (-=d) of the

0

10
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plane wave field. (Although similar notation is used. I ý and IP appearing in 128ý

(24) should not be confutsed with the transmission line Green's functions introduced

earlier.) The Jo(ka) factor in (24) is the result of the averaging of E' over the coax

probe circumference. Observe that (23)-(24) are in a gener :urm applicable to a

medium with any number of layers, provided the appropriate transmission line volt-

ages and current are employed (see Appendix A).

F. Far fields and RCS

The -scattered' far-zone field radiated by the patch and probe currents can be deter-

mined by the stationary-phase method [28]. It is then found that the patch contri-

bution to the far field in the direction (oo) is

]. 0  -jko(r-dcos~o) I.(2-)
E; ", 2joj eV (pdl ) J,(pf) k ' P' dS' (27)

E5 2 7rjr Jsý
SeO-jko(r-dcosOo) CO L (, ek`,p (1,5

E 0
Es. 2- eicos 0, 1,,7h(k,; dlz') " Jl(p') - &P (28)

where the orientation of the unit vectors ý, and ýo. and k, o with k)'=,h) sin 0,

are specified by (0o, ýPo). It is assumed in the above that the layered medium and t he

radiating structure are confined to the region z < d. The contribution of the coax

probe to the far field is found by a similar procedure, with the result

- o IC0 eko~r-dcos8oQ (4,o ) Cjkpc sin 9,cs~0

27rjr

sin0,Cs2O J I(z') I(kU dlz')dz' "29)

where (Pc, ý,) are the polar coordinates of the probe. Analogous expressions for

the far field of the magnetic frill current can also be given, but are omitted here

because the contribution of the coax aperture-which is assumed to be electrically

small-to the total radiated field has been found to be negligible. We note that (27)-

(29) are applicable to multilayered media. provided the appropriate transmission line

Green's functions are employed (see Appendix A). However, these simple expressions

lose validity near the horizon (0o , 90'), in which case the stationary phase point

11
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approaches a branch point singularity in the /9-plane. and guided wave 11h1nomIllna

dominate the far field.

If the plane wave field incident in the upper half-space is polarized in Ilie u direct ion

and the t, component of the scattered field is considered. where a and c stand for 0
or ?ý. the RCS of the antenna is given as [29. p. 181

o'•, -t Er -' I'• "= 47rr

It should be noted that the scattered field in the above does not include the planie

wave (geometrical optics) field reflected by the layered medium.

3 Numerical Method

A. Weak form of the integral equations

The MOM is applied to the weak forms of (1) and (2), which are obtained by "testing'

them with suitably selected weight functions {Ak} and {IN }, respectively, where the

former are defined over S and the latter over C. As a result, upon using Gauss'

theorem [30, p. 503] and integrating by parts, we obtain (cf. [31])

(Ak: ( Q4 ,J. )S)s\ 7- ( Ak. (G6. Vs.

+ (Ak. 9, Kz - (Vs.Ak. A'0.( )c
- A-(EA , = (A,:E (31)

(~vk \~Q /;j d dNk K d. I '

+ Nk, IC I I )'61 xk -2 Nk, (32)

where we have introduced the notation ( : ) for an integral of a product of two functions

separated by the comma. The dot over the comma signifies a 'dot product* of vector

12
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arguments and the prime over ) indicates that the integration is over the primed

(source) coordinates, while the subscript 5 or C designates the domain of integrat ion

(i.e., the surface of the patch or the length of the coax probe - see Fig. 2). For

simplicity, the arguments of the integrand functions are omitted in (3l )-(32).

B. Patch current expansion

The microstrip patch is modeled by triangular elements. as indicated in Fig. 2. lThe
probe-to-patch junction can be located anywhere on the patch. including edgges and

corners, but must coincide with a node of the triangular element mesh. The nodes of

each triangular element are assigned indices i, j, and k in a counterclockwise direction.

as illustrated in Fig. 4. We adopt here a local indexing scheme, in which these indices

assume the values 1, 2, or 3, in a cyclic manner. The sides of a triangle with an

k

"rnj 10

ni
*j Ai

ii ".k
0

Figure 4: Local coordinates associated with a triangular element.

area A are formed by three edge vectors. Ii, f_, and 1k. where fi is oriented from

node j to node k. The position of the zth node with respect to the global coordinate
origin is specified by the vector ri, whose projection on the xy plane is pi. Since the

microstrip patch lies in a z =constant plane with z known, the location of an arbitrary

point r within an element may also be uniquely specified by its radial position vector

p = pi+ , where pi is the local position vector originating at the Mth node of the

13
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element. As indicated in Fig. 4. the three local position vectors fl,(rther divide Ihc
element into three triangles, where the area of tile triangle opposite node is denoted

by A,. To facilitate the integrations over irregularly shaped triangles encountered in

(31)-(32). we introduce for each triangle a -natural' coordinate system iL..L.L-
where Li is known as the -area coordinate' or 'shape function" associated with I node

i of the element [32. p. 110]. and is defined as

*, A, • , (:3)

In terms of the area coordinates, the local position vector oi may he expessed as

= ekL, - g1 Lk (34)

To represent the patch current on each triangular element. we introduce a vector basis

function A?, given as (cf. [18])

2A

Noting that [33]

VL= -i 2- (36)
2A

where ii is a unit vector normal to edge i in the plane and pointing out of the

triangular element (see Fig. 4), we find the divergence of Ai as

1
A= - (37)

We also find that i,,. Ai is constant on edge i, which makes it easy to enforce the con-

tinuity of the normal component of J, between the elements that share this edge. The

patch current density and its divergence on each element may now be approximated

as

.A (38)

where Ii is the current leaving the element through edge i.

14
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I're COaxida [)rpl-0 is [1OdCled bY., iin!},lwr of ito , M11' Lrbrir h,- e! '! .,4 ,,

fit(, trril pomit'ý oft a. egritenit with lentol i h itre tsiH-mvd lo( i "Mi1c,' , otidii,'

assuriet, the vales I or '2 in a cyclic manier>. Hit. ,oal c,,,diialt-n , ,- 1;1

are specifie •l by and . iV, i,'at 'd jit te I .V " . t li, ,IHt ii. (1 4f1 a ,,,i,, I icii (

Zi ZJ

ligure 5: Locial coordinitte associate'd with a 11ir' > £• ,,II ,(I,-•.,.lI ,

element from node j is denoted by h,. For each elehment. we int ronelt, ia pair ,,if r",

shape functions V ,- deli ned ais i 'f. ;34.t1 . 99.

The location of' a point z on an clement may now be specified a&

S. .. + ('hA\-,. ,= - i Zfl( i Pb)

where it, is a unit vector pointin g out, of the element at node ()tObserve that hIe

value of c, is either + I or - 1, and that c. - C.. From (-10). i follows that

d Cz1

The axial probe ciirrent and its derivativ'e on an ele) mnt may now be approximated

by the expansions
•2 d 2 1

where I, is the current leaving the element through node i.

D.. Attachmrnt mode

The current expansion (38) is not suitable for a patch element havimnu the probe Ito-

15
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patch junction point as one of its nodes V(), represent It, current d(vi riuIt Ili oni -u,1

"junction elements," a special *attachiment niode, is requie 1th. which s sup•'rposed is

the non-junction part of the current. represented by 3iS). Let there be Nj j iimtion

elements attached to a junction node. where the total current /j enOtes t h, lincrosl 4 ) rip

patch (see Fig. 6, where only one pat clI jI Inict ion elemenT is sIown fIr I' pl ic it vI

Also, let the junction node of each junction element be assigned a local i uIhex '. and

k

Figure 6: Geometry of the probe-to-patch junction.

let the angle between the element edges that meet at this node be designated (,_

Furthermore. let the sum of the junction vertex angles be denoted by o. W( earlv.

a = 2-,. unless the junction node is on the edge of the microstrip patch.) To represent

the junction part of the current on an element whose node i is the junction node. we

use the basis function [12]

H, -f (A + Ak) 4):2a

The junction current density and its divergence on this element may then he expressed
as

J, = 1i H i, V,-J, = I / 0 14

where the second expression follows from (43) and (37). The union of the currents

represented by (44), which only exist on the patch elements adjacent to the junc-

tion node, form the patch part of the attachment mode. As mentioned above, this

attachment mode exists in addition to the non-junction part of the patch current.

represented by (38). The coax probe part of the attachment mode. which extends

16



over' t lit Ilit ieStegli ent (ijacelit to t I( klie juoliu 11"d1. I, .i1ii1)k\ av~l

whe(re~ it is aistinied that the, jucione 11)1 ode hla's a local index ".\V" io? '. That IIl

attachmn-ent current is e'asi lv incorporated Iin thle expatiion i121. by; -et 1 iiiu /. -- I i

the. j'unct ion lIilte se!gmlenlt .\We also note, t hat thle o iiirrewit iyen jvi 1A lit) ot-

the patch throuigh the 'unction node: rather, it enters thbrouigh I Ie 1'-flic!1l edit'es 1 ilat

meet at that node. Consequent ly, unlike sonic miore rigorousll at tactilieni '37'l .)

[:36], (4-1 ) dloes not correct ly miodel the dIiverging current behavior ne~ar ,he Jun ti lionl

Nevertheless, the current cont inuityv at the junction is sati'stied Ill a global a I enlSc

the total current entering the Nj junlctionl Patch elemlents Is equnal to thle cn rrenit I1

leaving the coax probe. and the net charge associated with I 14 1t151 is /cro. 'I'his

attachment miode is easily implemented in the MOM\ procedu tre becaulse it u orijprilses

regular basis functions already used to expandi the non-Junt ionj part of One c urrenit.

E. Global MtOM inatrzIX (I.cmb nd -4011tiOn procIUlrt

The testing functions in the integral equations ( 31) (32) are drawn front Olte 'arln

sesas tile basis functions used to represent thle current on thle patch and onl the coatx

probe. Hence. { Ak I consists of A2.with I= 1. 2. and 3, and ntI.. N,ý. where N.<

is the total number of triangular patch elements. 'Similarly. { .V JN consists of cz .

with i = 1, 2, and n = 1.. . . . N where N(. is the total numnber of 1line( seglin~int eflemntrl

on the coax probe. In addition, (31 ) is tested with the pat ch part of t he al t a(h lnient

mode. comprising the union of thte basis functions H ~. where r? = 1. 2., N1.[h

resulting equation is then combined with the equation that results fromi the testing of

(32) with the coax part of the attachmnent mode. .j .where the nthI probe eleencti

is assumed to be adjacent to the Junction. As before, we assurne here thfat t he local

index of the junction node is i'. Ini the above, it was necessary to ml rodtice lhe

,superscript (n) to distinguish the local basis functions associated with elemnent o. Inl

what follows, where there is rio dianger of confusion. this elemient superscript wdi be

ornitted for notational simplicity.

When the expansions (:38). (12), and (414) (415) are, subst ittited Init o t he, miniegra I

17
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equations (31) -(32). tile coefficients I are constrained by the boundary ('Gidit, ins.

which require contiuuitv of tht' normal components of J, across 1he edges shlareI

by adjacent elements, or their vanishing at the boundary edges of .. as well as

continuity of the coax probe current between adjacent segments. O(n the upperinost
probe segment. if the junction node has a local index 1. 1,(") is set to /j. which
explicitly enforces the continuity of the attachment molde current at the probe-io-

patch junction. Similarly. on the line segment at the base of the coax probe. if

the load node has a local index i. Ithn is set to 4. In general. Ij and l1, are [lot
known a priori and must be computed together with the other current vxpllansion

coefficitnts. In the unloaded case (when ZL = c). is set to zero. If the number of
the non-boundary triangle element edges is denoted by NE and the total rmniber of

the unknown current coefficients by N, then N= NE+Nc+l (or one less that number.

if ZL = oc). As a result of this procedure, the coupled integral equations (31 ) -32)

are converted into an algebraic system

where [Z,,] is the N-by-N global MOM matrix (also referred to as the global iIpeO

dance matrix), [I,] is the N-by-I global vector of the sought after current expansion

coefficients, and [V,,] is the N-by-I global voltage excitation vector.

To assemble the global system (46). we consider one source element-test element

pair at a time. Let the global indices of these elements be n and m. respectively.

Then, for each such pair we assemble a local system

[Z*n) I (In = [Vim t ] (17)

where [Z}7' 1 ] is the local impedance matrix and [,m'] is tile local voltage excitation
vector. Here, the primed local source element indices i'. j'. and (in case of a triangular

element) k' follow the same cyclic convention as the unprimed ones. Observe that

there exists a unique mapping between the local coefficients {Ji'•t} of each element
and the global current coefficients { I,J, where tile reference directions of the latter

18
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are specified by the order in which the element nodes appear in the input geometrv

data. This mapping determines to which entries of the global system (16) should the

elements of (47) be added, and with what signs.

Consider first a test element. Sn. on the rmicrostrip patch. Then. if the source

element, S.•, is also on the patch. the entries of the resulting 3-by-3 local impedance

matrix are found as

n-(A(G .Ai )- • G. IS T)
-. i = A,: Q4. Ai ,,, t. Io - , ,

If, on the other hand, the source element, G,2. is on the coax probe, there results a

3-by-2 local impedance matrix with the entries given as

ii' n = A i" & , k '.o.,c j,' Nj, -I o 4

In addition, when C', is the line segment at the base of the probe and L is the local

index of the load node, this matrix is augmented by the load contributions

iL - Ai.&, T (50)

which only affect the column of (49) corresponding to the load node. Finally. the

elements of the 3-by-I local voltage excitation vector resulting from testing over S,

are found as

(M -- ( A ; E ,') ,(5/

Next, consider a test element, C', on the coax probe. Then. if the source element.

S,-, is on the patch, there results a local 2-bv-3 impedance matrix with the entries

given as
= i ýVi , (52)

If, on the other hand. the source element., C,,. is also on the coax probe. the entries

19
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of the resulting the 2-by-2 local inipedance matrix are found as

"z 7 = -z KC'::.c V\ i<, )•, 1 K, --

In addition. when C, is the line segment at the base of the probe aiid . is the local

index of the load node, this matrix is augmented by the load contributionWs

,(rnr) = - ciM.) (51

which only affect the column of (53) corresponding to the load node. Finally, the

elements of the 2-by-i local voltage excitation vector resulting from testing over C,
are given as

,;(m) = Kc,:VJY, g '(55,

The local impedance matrices given above must be further modified to include the

contribution of the patch part of the attachment mode. Hence. let J be the local

index of the junction node on the coax probe. Then, for every patch junction element

S,, whose junction node is assumed to have a local index i'. the entries of (49) are

augmented by

Oz<a , G, •
+ K 6. AKG(56 L-1,)) -(. A

A±c (- G Aj X .
and the entries of (53) are augmented by

ZL~= (cN..,-r' A~) (c,\., (gT. .••a• A•.,~

+ -£ i, Aj,, -,-)

+ ( g ij 5ST

Note that (56) and (57) only affect the columni of the respective impedance Inatrix

corresponding to the junction node. Furthermore. for every patch junction element

20



.. whose junction nolde is assunmed to have a Iota1 in,[ex n the Opl"Oian)i, uluthx

given Qy (52) is augmented by

-(M, K, ('. A,. a',-K 1, A ;

In addttion, the element Zj/.,, of 1,3) i. augniited by lhe al tachiei lijode :,"I

term

-A,) ,, ,' 1, A.,:, j'/2 2n -2K 2-o

+ AQ . -- a ,, 1 A ( (;4,- - k

"(. - ";,i X.-

in which i' is the local junction node index on element S,. Similarly. for every p•at c

junction element S,. whose junction node has a local index i. the impedance matrix

given by (53) is further augmented by

-J, 2L - A,- KC, Neo- A,,.\,, - V

and by
Z(mn) 02 i ' J~ cS- .>-A ,. .- T , -4- .A .. 1, ,.i l

in which L is the local index of the load node on the coax probe. ;Also. tle volthace

excitation vector given in (55) is augmented by

V J )" 1 ,)" - A :(2

21



Note that (58)--(62) affect only the row of Ilhe respective locad sY-tcll e 17i ',,rr,4,,spndi

ing to the junction node onl the coax probe.

It can be shown, by using the reci proc ty properties of the tranin I ss i oi li ne ( ;re, i,

functions (see Appendix A). that - apart from the load ternis the local iniperkiiice

matrices defined above posses synnmietry properties, which may be exploitedtl Iunarlv

halve the computational effort involved in filling the global i n pedalce Ilatr Kx i I 161.

The integrals over the source coordinates. which appear in lihe i Inipedatlice maiict--

above, involve kernels that are singular when the test and source clenietit s Colincir(e.

These singularities are extracted and integrated analytically r38". l eavinrg well rely avo

integrals over triangular and line segment elements, which are nmnericallv evluat,,d

by Gaussian quadratures (see. e g.. [32. p. 113] regarding (;aussian rules for Irianutular

domains). On the other hand. the testing (exterior) integrals have regular and lowly

varying integrands, and may thus be approximated using one-point quadrature rules

[18]. For example, the integral in (51) is approximated as

A , i Lo t'• E , :

where a"in and r'm denote, respectively, the local (with respect to node I ee I~ig. 1

and global position vectors of the centroid of element :., . This procedure results in

significant savings in the computational effort. even though it sacrifices the sviimii rv

properties of the impedance matrices.

Once the complex-valued matrix equation (-16) is assembled and Solved, which i-

accomplished by standard procedures (LIU factorization with partial pivoting. foltlwer,

by a forward and back substitution [37. p. 160]). the current dlensitv within each

microstrip patch element may, be obtained from (38) (and (.-t). in the case of a

junction element). Similarly. the current within -ach coax probe element may be

found from (42). The resonant frequencies and Q-factors of a microstrip antenna may

be found as zeros in the complex frequency plane of the determinant of the global

impedance matrix (this is accomplished by means of the .,IMller's search procedure :37.

p. 1201). The corresponding modal currents may then be obtained from (16 wi Ih the

excitation voltage vector set to zero.

'2"
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F. Computation of spectral integrals

For the solution procedure described above to be practical. the spctral intezgrals that

occur in (:3)-(10) and in (20)--(2t ) imist be eficienIt lv evaluate( Io fccoI I p Is t haI.

these integrals are accelerated by asymptotic integrand subtraction and the method

of averages [39j, [401. [-Il1. In addition to these techniques, an i1t,,r,,l ,tioil and table

look-up scheme is implemented to further reduce the comiputat loll t ili( 3...... I I

The integration path is properly deformed to avoid the integrand singilarit hvs. which

occur on or near the real axis in the k, plane f1-14.

G. Far field and RCS computation

Once the coefficients i, are found for each element, the current expansions (38). (-2).

and (44) are substituted into (27)--(29) to determine the far fields. The integrals

encountered in (27)--(28) are then recognized as Fourier transforms of the vector basis

functions (35). evaluated at k,= k'. In view of (351 and (34). 1he Fourier transform

of Ai associated with a triangular element .5, may be expressed as

A, = KA,.(k P-

t 6 1 k 4)
2A

where/L, denotes the Fourier transformed shape function L,. Vpon usingl! the proce-

(lure of Appendix B. we may express L, as

=• -- b2 y•& bjo(a~k-l/2)e kP.p
A2Mý

P L'
+ 1,j j[ n(a ,k-/2) - jjo(aik-,/2) CAkoP,5

- [iiakk'p12) + ' 'o(akkp/2)] CJ~ 165

where p., is a position vector of the midpoint of edge i of the element. (i, Ii. t,.

b, = i'. 1. and j,• denotes the spherical Bessel function of or(der n. We note that

although (65) can be put in a simpler form, this is counterproductive betauise it

introduces removable singularities, which occur when k, happens to bc ort liogonal toa
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any of the three edges of hie element, i.e.. when a, =0 for i =. 2. or 3. In rot rast.

the expression for ii given in (65) is clearly nonsingular, unless k, = 0. Even in the

latter case. it can be shown that (65) approaches a finite limit A1/3 as ,;,-- 0. We also

note that when (65) is evaluated for k- = kj, as is required in (27) -(28). thenl A.", = 4,

iti= ,. and i=•o

The integrals that arise when the probe current expansion 12) is substitutied into

(29) depend on the form of the transmission line Green's function L.(/,',: dIz'). Let us

suppose that the coax probe extends over laver I of thickness d,. between the z-axis

coordinates z, and zj+1 . where z 1+, _< d. Consequently. I"(k/:" dz') ('an he expressed as

a constant factor times I-(k" :i+i~z'), Using the traveling-wave form of the latter (see

Appendix A). we then find that the integrals over a line segment element C, within

layer 1. required to evaluate (29). are given as

c/N , 1',(k,, :,+zII z') +.-+ F'

* {~J~cC(hke/2) +ii(hk:J12)1

_F, C-jk (2d,+z,) c, 'o(hk,,112) - j'jt(hk' /2) (0;)

where h is the length and :, the midpoint coordinate of the element. c, is defined in

(40). A'•t and P( are given in (16). and where the terminal reflection coefficients F,

and F, are found from (71). When used in (29). the above is evaluated for k,
Once the microstrip patch and coax probe contributions to the far zone fields are

determined, the RCS is readily obtained from (30).

4 Sample Results

The techniques developed in the previous sections have been implemented in a FOR-

TRAN computer code. In this section. we present sample computed monostatic (i.e..

O. = Oi, o= ý, ) RCS results for loaded and unloaded. coax-fed rectangular. circti-

lar and pentagonal microstrip patch antennas (see Fig. 7), and where possible -
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y y
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(a) (b)

y

*X

(c)

Figure 7: Geometries of probe-fed (a) rectangular, (b) circular. and (c) pentagonal
microstrip patch antennas.

compare them with available published data. In all cases included here the patch

resides on a single-layer substrate of varying thickness h. without a cover laver (see

Fig. 1). The incident field is 9-polarized, with the electric field amplitude EqflC = I V/m.

All RCS results are plotted vs. the frequency f, and are referred to I m' and given

in dBsm ('decibels above a square meter') [29, p. 1601.

The results shown in Fig. 8 are for an unloaded (ZL = oc) rectangular patch antenna

(see Fig. 7a) on an isotropic substrate characterized by ,(1 -j tan 6), with C, and

tan 6 specified in the figure caption. Newman and Forrei's [1] and Pozar's [21 results

for this antenna are included for comparison.

In Fig. 9 we show results for a coax-fed rectangular patch antenna (see Fig. 7a,
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where (xp, yp) are the feed point coordinates) on a lossless uniaxial suibst rate. three

sets of data are presented, corresponding to ZL = :Xno load). Z1, = 50 Q (IIa 1'd1

load), and ZL = 0 (short-circuit load). For the first two cases, our results are compared

with those of Pozar [2]. We note that, as expected. the first and, to a lesser degree.

the second RCS peak are suppressed by a matched load, and that the shor ling pI[

causes the RCS peaks to shift up in frequency.

0 . . . I . . . I I I I ' I "

NEWMAN & FORRAI, 1987

S.... POZAR, 1987

A THIS APPROACH

b

2 4 6 8 10
f (GHz)

Figure 8: RCS of an unloaded rectangular microstrip patch antenna. The parameters
are: L = 36.6 mm, W = 26mm, h = 1.58mm, c, = 2.17. tans = 0.001. 4, = 45°. and

Oi = 600.

The results shown in Figs. 10 and 11 are for coax-fed circular microstrip patch

antennas (see Fig. 7b, where x, specifies the feed point location) on isotropic sub-

strates, with the loads ZL = oc, 50, and 0 Q?. In Fig. 10 we also show for comparison

Aberle's [42] computed results, and in Fig. 11 we include the results computed and

measured by Aberle et al. [4] for ZL = •c and .50 Q). In reference to Fig. 11. it is of

interest to note that our results are closer to the computed, rather than the measured

data of Aberle et al. [4].

Finally, in Figs. 12 and 13 we show results for a coax-fed pentagonal microstrip

patch antenna (see Fig. 7c, where P denotes the feed point) on an isotropic substrate.
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b •.x
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Figure 9: RCS of a rectangular microstrip patch antenna for Zj, = oc. 5)0. and 0 Qt.

The parameters are: L = 10rmm, if = 15 mm. xp -L/4, yp = -11Vi4, t = 1.27am,.
Ct = 13. • = 10.2, a =0.432 mm, b = 1.397 mm, 7, 450, and 9, = 00.

With the dimensions given in the caption of Fig. 12 (which correspond to a case

considered in [4:3, p. 24.5]) and no load attached, the first three excitation-free modes of

this antenna were found at the resonant frequencies f,] -1 .123CGHz, fr2 = 1.194t GI-z.

and fr 3 =2.184 GHz, respectively. The modal currents of the first two modes. which

resonate at very close frequencies, are orthogonal to one another. With a properly

selected feed V 2ation, these two modes are excited with equal amplitudes, resulting

in a circularly polarized (CP) radiation field at a frequency that lies between fril

and fr2 [431. The coax feed is used to minimize the degradation of ellipticity by

unwanted radiation from the feed network. In the case of Fig. 12a, where ,,=O0°. the

polarization of the incident field is such that it excites the first. mode of the antenna.

but is orthogonal to the second mode. As a result, the co-polarized R.CS component.

r~o dominates the cross-polarized component. Co4•, except near the (11 frequ~ency, at

which the first and second modes are coupled through the loaded coax feed, and the

value of ur0,o approaches that of ior0. The second peak in the plot of cr0 corresponds

to the third mode of the antenna. In the case of Fig. 12b, where .,=45°0 the incident.
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Figure 10: RCS of circular microstrip patch antznna. (a) Z4 = ,. ( Zr .5(0
and 0 Q. The parameters are: R =23ram, .rp= .9.21 mm. h = 15S mm. -= "2..

*tan 8=0.0009. a=0.432mm, b= 1.:197mm, •i0° and 0i=6 0°•

028

x xx.28

I ,



ZL
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F:'igure ti: R.'S ot a circular microstrip patc} aritenna. 1 0z. Td " j,

and 0 Q. The parameters are: R = 7.1 min .rx; = 2.5 mm. h -.- 07mm .... 2.2.

1 an • 0.0009. a = 0.132 umm. t, = 1.397 am. •, 0'. and i), = 63°
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'0.5 1.0 1.5 2.0 2.5
f (GHz)

(b)

Figure 12: RCS of a pentagonal rnicrostrip patch antenna for Z[, 50Q a~nd 0iK

(a) ~,=0'. (b)~ 450. [he parameters are: s = 80.1:3mm. (I = 61 22nmm.
p= .57 mm. h =3.2mm~, (, =2.5.5. tan 6 0.0018. a=0.635 rum. h,-2.095 )mm.
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&Al(1 con pes approxim at ely equalkl5 o it) ilic rsT iw) Inhie. InI I W,. 13i 1:, A ,,

plots of t he real and inmagiry parts o! the at lch curreti &hmrvtinV ti~ ph•,. caw

Fig. 12a. at a frequency f= 1.1!91 (;lz. which ,rr,'i,,nEL I., olih vW ,,ak of 4i.

curve. We nott that near the coax probe the iniunAnarv part ,,f he ,ufir,:ew wi';" o -v

directed towards the feed point. as expecT ,d.

The results presented in Figis. 12 and 13 vw ,eeloai tied mIVinei a W5ii, , :"Ai r ii

of the pentagonal patch Ovwhich -an he seen in liu- l3I and ,b hr',e- c n,•! i

of the coax probe. The resulting size 4t The ghIbtal iIpIIan, 'i i I, P,;,,-

220-h"-220. The computation time was under 1liinwtn s per freqnr• y Imt, , ail

M186 PC running at 25 MRLz.

5 Conclusion

We have developed an elegant and efficient i ntiegral equation approach fo'r lie• l{i'S

computation of coax-loaded microstrip patch antennas of aritrarv Sihawit Oih -i,

strates that may be electrically thick. The metlhod has been validated for m, atap ii,,lar

and circular patch antennas, for which results are available in the liT,'rat rire. Nw S

results have also been presented for a pentagonal microstrip patch atitenna dsinoel

to radiate a circularly polarized field from a single coax feed. Wit h t he a pproach lrg-

sented here. microstrip patch antennas of various. possibly irregular shapes. eilt,,i-

ded in a multilayered uniaxial substrate. may be analyzed within a singale Threoretical

framework, using the same computer code.

A limitation inherent in this approach is the assumption of a laterally i niie muhii-

strate and ground plane. Although the patch current (list ribut ion is rather i,-enssitiv

to the finite substrate and ground plane effects (assuming that 0, < 90'). thle 'anic

cannot be said of the scattered field (and l(CS . especially for 0:, approaching 90'.

where the diffracted field from the edges of the substrate and! ground plane nma he

the dominant contribution to the far field of the antenna. Also, the back lobes of lih

radiation pattern obviously cannot be predicted based on the infinite ground plan,, a&

sumption. One way to remedy this is by using hybrid techniques. wn hich coml ,iTIe Cthe

infinite-substrate integral equation method with the geoniet rical t heory of diffract ion
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GTI) ) 1I4 1 or t he Fast Fourier TIransfor iu I: "1 F )Iet hod 15).

A Transmission Line Green's Functions

[he voltage t, ai!• current I: at a point z in the uth I lran llssloln line11 c ti"1 1 i.

taining a unit-strength current source / at :'. as ilustrat.d iii j . t t. ueV iii

equations [27. pp. 747]

d
d -1( I--') -jkZ,, t(zz')

dz
where kz,, is the propagation constant. V4 (Z,) is the characteristic admit lance I ilpe-

dance). and 6 denotes the delta function. For notational simplicity, we oinit here the

P P

nn
i Ynp.

1A k4
0 ), (z

Zn Z' Zn . y

Figure 14: Transmission line section comprising a unit-strength current 4oulrce.

0 superscript p (which stands for f or h). and we do not explicitly indicate the deperi-

dence of the voltage and current on the transverse wavenumber A,, which deternilnes

k, through (15)-( 16). From (67)-(68). ,(:jz') within the n7th transuiission line1

section containing a source may be expressed in the traveling-wave form

2 Y, -;!
k:(z~' e-Jk.-,,l•-z'lj [1± [n(zo) 6 J2k'•(z<-')J 11+ l''L(,) i

1 (zz)= _____________________________i i 5!
2Y;•i-~ 1i~(,)Is(ot

:3:

0



where :< = in(z. ~'), => - Ilx((. a ).( is i an arbit rv iete-t f ire point %%'0 iwd l 1  hrt

n~ t h sect ion (which is usually set to z. or .- w I whicheIve- r ic - l ' II, oN n .rl i ItIII i.tn•I inin

[> :o) and 1", --0) are the reflection coe-fticients 'lookifg to lie lf! nt•id io,,r4),d l '1

the right respectively. at -o. BYIl us 0 1of lt I r t islatl iol frn lla

IL, :i , = l.I -' ) 0 .. • " . . 7 )

where the upper and lower signs correspond to th lriehdit and lefi arr,,.-, ) ,-Pi,,

tively. these reflection coeflicients ('an be expressed in tI erni,' of tle re>jwct j',e ,rni

fal reflection coefficients r;, and lY. which are related to th h ,rre'poon, If r i,'ri - iial

admittances I', and I;' (see Fig. 1-[) as

1 Vr1 + y y I I

For a transmission line section of a finite length d,. a particularly conwenient form of

(69) is

which is obtained bv letting Zo= ¾ and using (70).

The voltage IV, and current 1'. excited bv a unit-strength voltage sour-ce v.. ati-fv

equations dual to (67)---(68). which are obtained from the latter by making the '.1!lst

tutions: V, * ,. 1, - Vt., Z• , •,,' and V, --* Z,,. Furthermore. it can be '.hiowtn Thal

the following svm metry and reciprocity relations hold (cf. [16. p. 7 -127. p. !)I9

V (-Iz')= VI(-z'- ). I,.(:IZ,) 1= :' z.-1,! 1 '73

As a result. liz Iz') can be obtained from (72) by recplacin, in lthe- latter V; bY it

inverse (which causes the reflection coeflicients to change signs). I, .- z' foll,,w% froTim

(67) and (72), and Ii" ( z z') may then be obt aine(d from the last reiat ion i, j 731.

The voltage and current on the nrtth t ransitission line sectiton hat is 'More--frle-e

:31
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s atisfY the homtogeneous fiornm of)Ti. of . .I 1lr • t 1- f , 'iain>. H w , a ,n

point z within i l th' lie SectiOnl t i t' I)y XlrI .5'r 41t tw'texp-,mi "ii i- of th+a,. i',, , t+ i, ,

O(ne of its terminal pairs. T''w result is

*' 1 W = I Z.n) _ I ,-: - >I. ,I'' .. . -

L

where z0 - z,- or z = z, , I(see 1" g. I 1 4p vnt d ina , ,n htt lie le, r ...., v i -n , I

the left or to the right, respectively, of the line nect ion. and whelre be :ppr 1 W,,r
arrow corresponds to : > _-, (:-- z>w). WVe ha~ve oitted th W sbriipt 4 1 in ,T7

because the latter applies irrespective of the nat ure o: the ourc,. and ;ii ilpd' fro,

its argument. becanse (71) only implicitlyv depends onl the i.oure nkeathan, wh ii k

outside the n+th line section. The current lt01z correspond in m t, t itiv in , Q "taionh

by substituting the latter into (67).

Finally, we note that (70) (71) are easily implemented in it recur.iv. computt r

routine to determine the leftward and rightward reflection coeffiCieint, mer,,I d iln ,72!

and (7-1). The computations proceed from the outward-lookiin, reeItcn , 1 ,t4) icio-

in the top and bottom transmission line sections (see Fig. 31. ()wsrive that the exi,-,

nential functions encountered in (70). (72). and (71) have noiic ra+i u,2 mai, it<"-h

so there is no danger of overflow. When the nth transmission line ti tirn e ,ten' . tio

positive (negative) infinity along the z axis. the reflection coefficient . i, -, to

zero in (72) and (71).

B Fourier Transform of a Triangle

Shape Function

The Fourier transform of a shape fOnction L associated with a trianj,,iltr ,elet ltil u

is given as J,=• L, • k':pd," 7

where k, = tiz,. To evaluate the integral in (75). it is helpfuil to fitrst conve'rt it to

a line integral around the boundary contour. i)0.> ,. of .,, (cf. '1V. 9'.- {t) ý. -hii is
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most easi acI ompl,"h(d by tIo)1 i Th1at 1 501i

k, p

S ~and by m aking use of. the dlivt'rgen4'' Iievoreni . A.. .;m't wlitu A-, 1 1

~jA,-,k; p k u n,/

where V = z x ui and n' denotes a unit vector torinal to al , t HO • il" i tna•, di,

pointing out of S,. The integral in (77) iv easily evallated in lthe local 404)idl'Ioe.

if one notes that when i is on edge i. ri = . 0 1 I = . . - /n,

df= fdLk (see Fig. 1). Also. in that case p= p, --4. where oe, a vector flo, nio(de'

j to the point ý on edge ? of the element., The resulting closed-fortn expr 'nIom nr I,

is given in (65).
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WAVECGFIDE EXCITED MICROSTRIP PATCH

ANTENNA - THEORY AND EXPERIMENT

M.-H. Ho, K. A. Michailski, and K. Chang

Electromagnetics & Microwave Laboratory
Department of Electrical Engineering

Texas A&M University
College Station, Texas 77843-3128, USA

ABSTRACT

An arbitrarily shaped microstrip patch antenna excited through an arbitrarily shaped

aperture in the mouth of a rectangular waveguide is investigated theoretically and

experimentally. The metallic patch resides on a dielectric substrate grounded by the

waveguide flange, and may be covered by a dielectric superstrate. The substrate (and

superstrate, if present) consists of one or more planar, homogeneous laers. which

may exhibit uniaxial anisotropy. The analysis is based on the space domain integral

equation approach. More specifically, the Green's functions for the layered medium

and the waveguide are used to formulate a coupled set of integral equations for the

patch current and the aperture electric field. The layered medium Green's function is

expressed in terms of Somnmerfeld-type integrals and the waveguide Green's function

in terms of Floquet series, which are accelerated to reduce the computational effort.

The coupled integral equations are solved by the method of moments using vector

basis functions defined over triangular subdomains. The dominant mode reflection

coefficient in the waveguide and the far field radiation patterns are then found from

the computed aperture field and patch current distributions. The radar cross section

(RCS) of a plane-wave excited structure is obtained in a like manner. Sample nurner-

O ical results are presented and are found to be in good agreement with measurements

and with published data.
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1 Introduction

Microstrip patch antennas, which belong to a large class of printed circiit antenlnas.

are widely used in the microwave frequency range. both as single eleelent s aind inore

often) in array configurations. '[heir advantages are well known: low cost. conforritv.

ease of fabrication and integration, reproducibility, ruggedness, light weight. and low

profile [1], [2]. In recent years, the utilization of millimeterwave systems, with smaller.

lighter components and antennas, has provided a wider bandwidth, and consequently

higher data rate communication and better resolution than microwave systems [31.

[4]. However, the feed structures that operate well at microwave frequencies are

not always viable in the millimeterwave range. For example, microstrip line losses

become significant and coaxial feed components are not available above about 50 G Hz.

which renders the direct feed techniques impractical in this frequency range. On

the other hand, since the waveguide bulkiness becomes less of a factor, while its

losses remain smaller than those of a microstrip line [5], the indirect waveguide feed

becomes an attractive option for millimeterwave antennas and antenna arrays [6].

Moreover, in some applications the aluminum waveguide may also serve as a heat

sink and support for active devices that may be integrated with the antenna. Another

antenna configuration that possesses the advantages listed above is a waveguide-fed

slot antenna. Its gain, however, is significantly lower than that of a waveguide-excited

microstrip patch.

In this paper, we present a rigorous integral equation analysis of a waveguide-fed

microstrip patch antenna, as illustrated in Fig. 1. The arbitrarily shaped microstrip

patch is coupled to the rectangular waveguide through an aperture, which may also

be of arbitrary shape. The dielectric medium above the ground plane may consist of

one or more planar, homogeneous layers, which may exhibit uniaxial anisotropy. The

nth layer is characterized by the permittivity and permeability dyadics

1 E ft + j&n 1 = I Az + i(1)
=n'

where is the unit dyadic transverse to z, and e,, (ut,,) and c,, (ps,,) denote, respec-

tively, the transverse and longitudinal dielectric (magnetic) constants relative to free

2
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Figure 1: Geometry of a waveguide-fed microstrip patch antenna.

space. Observe that we distinguish dyadics by double underlines and unit vectors by

carets. The free space permeability and permittivity will be denoted by p, and (,,

respectively. For each layer, we also introduce its electric and magnetic anisotropy

ratios, v,, and vu, respectively, given as

e fzn h _znL'n = -- ' IJ = (2)
n fn /Itn

The structure is excited either by the dominant (TE•o) waveguide mode or by a plane

wave incident in the upper-half space. The primary quantities to be computed are

the aperture field and patch current distributions. From these, other quantities of

interest will be found, including the dominant mode reflection coefficient, the far field

radiation patterns, and the radar cross section (RCS). Although attention is limited

to a single antenna element, it is expected that the results of this study will also be

3
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useful in tile analysis, by anl approximate tecniquie. ,of finite watveg-ide i'd aiit lt

arrays.

The remainder of this paper is organized as follows. II Sec. 2 we fruwilate (lipled

integral equations for the patch current and the apertur, electric field. where ihe

latter is represented by an equivalent magnetic current. [he kernels of thc.e Interal

equations are expressed in terms of the voltage and current (;reenEs finictions of

a transmission line network analog of the layered medium, which is di.iicussed in

Appendix A. In Sec. 3 we give the numerical procedure for the solution of thie iWtegral

equations. and in Sec. 4 we describe the experimental verification of the theory. W'

present sample computed and measured results in Sec. 5, and give conclhsitus in

Sec. 6.

0 2 Formulation

2.1 Integral equations

0 To facilitate the analysis of the structure shown in Fig. 1, we invoke the equivalence

principle [7] to in effect decouple the original problem into two simpler ones. referred

to as the 'interior' (inside the shorted waveguide) and 'exterior' (above the ground

plane) problems, as illustrated in Fig. 2. This decoupling is achieved by first shorting

* the aperture Sa through which the two regions interact, and then placing over it an

equivalent magnetic current Ms, which represents the tangential electric field in the

aperture. The negative of Ms is placed on the opposite side of the shorted aperture.

thus explicitly enforcing the continuity of the tangential electric field across S.,. In

0 the equivalent problem, the effect of the metallic patch Sp is replaced by an equivalent

electric current ,Js.

The conditions of vanishing tangential electric field on the patch (which is assumed

to be perfectly conducting) and continuity of the tangential magnetic field across the

aperture may now be stated as

x [E(r) + E'(r)] =0, rES (3)

4
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Plane wave

Dielectric 
S-

layers -. H.) Ms S& (shorted)

- -*-*- I Ground
(E_,H-) plane

f -Waveguide

Dominant
mode

Figure 2: Problem equivalent to that in Fig. I.

i X [H" (r) +H' (r) i [H- (r) +H' (r)I I r E>(

where the subscripts + and - refer to, respectively, the exterior and the interior

regions, r is the position vector, (E',WH) are the the 'short-circuit" electric and

magnetic fields of known sources, computed in the absence of the patch and with the

aperture shorted [8], and (E', H') are the 'scattered' fields produced by Js and Ms.

Rearranging (3) and (4), we obtain

-• E(r)=i xE+ (r), r ES, 5

- [ XH*(r)- -H (r)] = X [H'(r)- H'(r)I , r ES (6)

The scattered fields in (5)-(6) can be expressed in terms of the dyadic and scalar

kernels of the exterior and interior problem as [9]

E*(r) = - fj 2'(r I r')-Js(p')dS' - Vs, G(r I(t') V'.s(p') dS'

+f GEM(rjr').Ms(p')dS' (T)

H*+(r) = I r')'Js(p') dS' - sa G+(r I r')' Ms(p') dS'

Isr I.5
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V1- v G ((r r)V'. f.(p'td)

HW(r) NGIS-rir') v •(p)dS'

+ vJ ;W- (r r') V'(Mp')d.•'

where prines indicate source coordinates and p is the projection of r on tht x, pl.tne.

Upon substituting (7) -(9) into (5) -(6), we obtain a coupled set of integral eInatiMns

for the unknown equivalent currents J5 and AI 8 . given as

: JS + Vt (GC V-Js - (G-": MN.) E+.( r), r C % (10)

t (2:;Js -~ + Gf" MS)

-v,(G"+ +cG-, Vb.M•)' = H,.,(r) H, . , •, Ii)

Here, we have introduced the notation (;) for an integral of a product of functions

separated by the comma. The dot over the comma signifies a 'dot product' of vector

arguments, while the prime over ) indicates that the integration is over the primed

coordinates. The subscript t distinguishes components transverse to i. and the sub-

scripts SP and S, indicate the integration domains (see Fig. 2). The dyadic kernels

in (10)-(1I) are given as [91

,G (r r')I~(~' (12)
:0EM E34•(fr'

G (rtr) = (r rG (r• r'

S., (r') r+ ýiGv j r') (13)

* (HJ,1') = (-±+# M)GM'(r',Ir)
-,G'(r'tr) -- + (I

=+ (r IrIG,,(rtr) (15)

0 6
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F"- .. .4 r

Where
('(r r') = So {'/.(k•~: si I'+

.j1:. I r') - r,( r')Ž12§L. St

*, 9rl "2 J+

cos2( { -+•k, z. ' -2(')

s -'f.r f') z z) + h ,..; Z Z,2

G+:,rw , , cs Q{.++ •,( ;z z)I 1/ (k)2 zl') (2

MG ( riP ) {z z
V 1

IV,{ (k; Z Z + +' ( ;zl+)ý (20)

F'+(r I r') =S I I'k { Iz z')) (21)

+,2)

(r_ r,) =-b-, 9 : 1 , ý 1( 2

G' (rir') = +ý X' I .. tA z ( I Z•• ')} (23:)

Sand the scalar kernels are given as

G+f(k p,)} = So{j V J�(k�; ')-; Z I 0,, _ (k Z Z(I)G(r S P (241

b 7G (r + + + 0ý
t 26)

In the above, we have introduced the Sommeefeld integral notation

S.' If/(k•,) 1 -1 f (k-p).(kvý)kp+'dkp , n --O0, 1, '2 (27)



99

(r - xY)z + (Y •j)' 1 arcai "2S

where J, is the Bessel function of order ., and t he F:oquet ',eries notattlt]

+m+-x_, r-=--

with

kP ~~~~ ~ 3, /,,i+Vý2 +1

Here, A, = d dy, with d( = 2a and d. = 2b, where a and b are the inner waveguihde

dimensions along the .r and y directions, respectively. [he symbols V',' and V' in 1 17)

(26), where p stands fr e (E mode) or h (H mode) and a stands for 1 (current source')

or v (voltage source), denote, respectively, the voltage and current transmission-line

Green's functions discussed in Appendix A. The four series in (22).(23) and (26) arise

from the multiple images of a transverse magnetic dipole in the walls of a rectangular

waveguide.

Once the current distributions Js and Ms are determined, the secondary quan-

tities of interest, such as the waveguide dominant mode reflection coefficient at the

aperture., the far zone field radiation pattern and the RCS, can be found with little

extra effort.

* 2.2 Short-circuit incident fields

In the driven antenna analysis, the incident electric field in the air-filled waveguide is

taken to be that of the dominant TE10 mode (we assume that a > b), and is given as

El "(r) = Voeio(p)e3--ik oz (31)

with
Co /5- ký,• =/ Fk2 Y(2

eio(p) = -a a- 2a~ ~ = -(2

where k, = • is the free space wavenumber. This incident wave excites the

short-circuit magnetic field, whose transverse component is

flj(r) = YoVoh1 o- rY+1 (z)o C jk1 z(

0 8
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with
h 0 (p) =•-x 1)

where r, = Vi% is the free space Intrinsic impedance. In (33 1,. i tOhe

dominant mode reflection coefficient in thle short circuited waveguide. which ass-litls

the value -1 at z = 0.

In the RCS analysis., the structure is illuminatod by a uniform plane wave field

+ ( r E,) + p, F i35)

impinging from the direction (0,, p, ) on the grounded layered medium from the upper

half-space. which is assumed to have free space parameters. Observe that in (35)

the phase reference point is chosen at (0,d), where d is the z-coordinate of the

uppermost interface. This plane wave is the source of the short-circuit electric field.

whose transverse part is given as
+,ýyhk'

E,+(r) = [i•V•I(•:d) +oVh(k-;zId)] ekop (36)

where k = pk', with k= kosinO1 . In the above, VP(k,; z Id) denotes the voltage

on the respective transmission line analog of the layered medium. excited in the

uppermost section by the voltage waves
Ve, ,. jke•(z-d)cos6, (7

k ;k¢ z d) = co E' (37

z I d) = oE e)ko(z-d),osG (38)

propagating in the -z direction. The transverse short-circuit magnetic field associ.

ated with (36) may be expressed as

H'tI+(r) = ,ih(k•, I d) - (.P = z -?oI z d)J p (3.9))

The voltages and currents in (36) and (39) can easily be found in any transmission

line section, as discussed in Appendix A.

9



2.3 Secondary quantities

From the equivalent currents JT and Ms, other quant.ities of i itercst 111,V 1a1i% V I

obtained. Hence, for the driven antenna we compute the dominant ii, V )rt ur,

reflection coefficient I' and the corresponding norualized aperture adrnlitanc, I e

given as
F -~- (Ms" hmo)&~ l - 1 1 i i)

V, "I + F
For the plane-wave excited structure we also compute the dominant nmU(hP ,per!iri

transmission coefficient, given as
T = - (Ms ;hl) (|i

VI Eg + I E + I 2
For either excitation, the far zone fields in the direction (0,, -,,) are obtained as

jk, _ko(r-dcO o) 0, ( (p'), k p
E9 j Ye(k;d Ih).((2r P

0 I oVh(k , o.d9hw

•o 271"" r

77 h o . < o P ,
-rlI•(kp-,d O)ý~. M ~ ',u O ' (4:3)

where jo and o are the radial and azimuthal unit vectors evaluated at (0 ,. 'o), and

l• = kkP, with k' = kosinOo0. It is assumed in (42)-(43) that the aperture is in

the z = 0 plane and the patch resides on a substrate with thickness h. Observe that

(42)-(43) include contributions both from the patch and the aperture.

For the plane-wave excited antenna we also compute its monostatic RCS. Hence,

if the incident field in the upper half-space is polarized in the u direction and the c

component of the scattered field is considered, the RCS of the antenna is given as [9]
a• =4rr2 IEVI 2

O'UV= 47rr IE,, (44)

It should be noted that the scattered field in the above does not include the plane

wave (geometrical optics) field reflected by the layered medium.

10
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3 Numerical Procedure

3.1 Weak form of the integral equations

The method of moments (MOM) is applied to the weak forms of (10) anid 11 . which

are obtained by testing them with suitably selected weight functions { A.,.} . h nelwd

over Sp and S',,. As a result, upon using the Gauss theorem [10. p. 5031. we obtai i

KA..;KG" ýV, -Am ,C V' Jp P .

* An ; (G EM; mm E,+ )s

Am . , (Am; +c+I-, + G Ms o )'

+ ( Vi Am.ý Gc;+ + G" V' - MsV
~(Am,; t -H -G !6

Here, the incident fields E',+ and H,+ are absent when the waveguide aperture

reflection coefficient is calculated, and H',_ is zero in RCS computations.

3.2 Patch and aperture current expansions

As indicated in Fig. 1, we model the microstrip patch Sp and the aperture S,, by

triangular elements. The nodes of each triangular element are assigned indices i, j.

and k in a counterclockwise direction, as illustrated in Fig. 3. The sides of a triangle

are formed by three edge vectors, ti, 1,, and 4k., where t, is oriented from node j to

node k. The position of the ith node with respect to the global coordinate origin is

specified by the vector ri, whose projection on the xy plane is p,. Since the microstrip

patch and the aperture each lie in a z = constant plane with z known, the location

of an arbitrary point within an element may uniquely be specified by its radial vector

p = p, + Li, where pi is the local position vector originating at the ith node of the

element. As indicated in Fig. 3, the three local position vectors further divide the

Ii
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Figure 3: Local coordinates associated with a triangular element

element into three triangles, where the area of the triangle opposite node I is denoted

by Ai. To facilitate the integration over triangular domains, encountered in (45) (46).

we introduce for each triangle a 'natural' coordinate system (L,, Lj, Lk), where L,

is known as the 'area coordinate' or 'shape function' associated with node i of the

element [11, p. I101, and is defined as

A 3

where A is the triangle area. In terms of the area coordinates, the local position

vector Qj may be expressed as

L = 1)Lj - IjLk (iS)

To represent the patch and aperture currents on each triangular element, we introduce

a vector basis functiou' A1, given as (cf. [12])

A= (P19)
2A

Noting that the gradient of the shape function is

V =L, = -n,• (50)

12
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where ii is a uniI vector perpenidIC Ilir to edge I i I Ihi plaII ' I / I)I I t! oi iŽO I •A' 1ht,

triangle element (see Fig. :1). we find the dIivergence of Ai, a's

Vt'A - I

We also find that i- Ai 'is constant on edge 1. which makes it easy lo ,iifolce,

continuity of the normal component of current densitV between Owhe 'Ieieiiw s 1h1al

share this edge. The patch current density and its divergence oM e&:h lehmlent ,yl

now be approximated as

3 
3 is

Js 1 AI,, Vt-Js=2
l�=11=1

where Ii is the electric current leaving the element through edge i. Similarly, Ole

aperture current density and its divergence on each element are approximated as

.3 3

Ms K:A, & Vt -M.5  A3

where K, is the magnetic current leaving the element through edge 1.

3.3 Global system assembly and solution procedure

The testing functions in the integral equations (45)-(,16) are drawn from the same sets

as the basis functions used to represent the patch and aperture currents. Hence. {A,ý, }
consists of A'), with i = 1. 2, and 3, and n 1,.--, N,, where N, is the total number

of triangular elements of Sp and S,,. In the above, it was necessary to introduce the

superscript n to distinguish the local basis functions associated with element n. In

what follows, where there is no danger of confusion, this element superscript will be

omitted for notational simplicity.

When the expansions (52).-(53) are substituted into the integral equations (45)

(46), the coefficients [(') and K (n are constrained by the boundary conditions, which

require the continuit) of the normal components of Js andt Ms across the edges

shared by adjacent elements, or their vanishing at the bound3.ry edges of Sp and >2,

respectively. If the numbers of the non-boundary triangle element edges on the patch

t3



and the aperture are le('ottl b) %;, tr tilt .\o. r,,pe, i ,. -0
unknovn current expansion omfictth is bY \ N. thenl N \ V. N" N A t ý- r k i-

procedure. the coupled integral equattionis 15 1 l6 are cnvcrt. I a , aI i•chrai,

svst Clfl

Hlere. the .N-by-\ systeml Tatrix consists of four submatrire., whre .. i> 'tA

Np-by-,V\, global impedance matrix. / .,,.J is the .\VN-by- N', glAhat iumplinliz. ntlt ix.

[O,,,,) 1 - , where the superscript F indicates the matrix t rausp,,. and )i

is the N,,-by- ,N, global admittance matrix. The .V-by- I vector oft he u,, krnio-.n current

expansion coefficients in (54) comprises the .\N-by- I global vector -I o patch n irrenr

coefficients and the N,,-by-i global vector [K,A of aperture current ,octlicietits. Ihe

V-by- I global excitation vector consists of the N.-by-I global patch voltag, exc itation

vector [V/] and bhe NV,-bv-1 g: bal aperture current excitation vector ill.,

To assemble 'the global system (5.4), we consider one source element-test ,meitit

pair at a time. Each such pair will in general contribute to nine eleentws of thet

global system matrix. it is convenient to view these contributions as the entries ,f

a local 3-by-3 system matrix corresponding to the element pair. [urthermore. each

element will in general contri.,te to three entries of the global excitation vector.

and these contributions may be assembled into a local 3-by-1 excitation vector. To

b- more specific, let the global indices of the source and test elements be n and rn.

respectively. Also, suppose that both elements are on the microstrip patch. Then.

the associated local system will take the form

where [Z•,"Y1] is the local impedance matrix. [I,(")] is the local vector of current coeffi-

cients, and [V,!m)] is the local voltage excitation vector. Here. the primed local source

element indices i' J', and k' follow the same cyclic convention as the unpritned ones.

Observe that there exists a unique mapping between the local coefficients { I'",} of

each element and the global current coefficients {1,,} where the reference (irections

of the latter are specified by the order in which the element nodes appear in the input

14



geomeit~t ry data. This ri apin deterumines to whl ich e itt ries of the gl( hhl ,vslenll I I

should the elements of (55) he added, and with whiat signs. Lo'al idl- ýis siliilar I')

(55) arise when both the source and test t hlen .ts are in the aperture, and when one

of them is on tile patch and the other in the aperture. Below. we descrihe lhese (lCal

systems in more detail.

Consider first a test element, 'oi thle patch. Then, If thle Soulce eletiilit .

is also on the patch, the entries of the resulting local impedance matrix are fotnd as

- (As rGi As, - K -i ((56)

If. on the other hand, the source element, S,?. is in the aperture. there results a local

coupling matrix, with the entries given as

-s (A (G ~ (5s)
,s p

Each patch element also contributes a local voltage excitation vector, whose entries

are

=in) A,E (58)

Next, consider a test element, S-, in the aperture. Then, if the source element.

S', is on the patch, there arises a local coupling matrix, which may be shown (from

reciprocity considerations [7, pp. 1 t6-1201) to be the negative transpose of the cou-

pling matrix given by (57). If, on the other hand, the source element, S.". is also in

the aperture, there arises a local admittance matrix, whose entries are given as

Y(m,) = Y(--), +yn', (59)

, (A1, (GaF , - (G+ (60)

Finll,-ac (A." "G~ Aji) - K • GO-, (61)

Finll, echaperture element also contributes a local current excitation vector, with

the entries A() - (62)

15
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The integrals over source coordinates in (56) and (6) (i6 ) involve kernels dhat

are singular when the test and source elements coincide. Ulhese singularities are ,x-

tracted and integrated analytically [131. leaving well-behaved integrals over triangular

elements, which are numerically evaluated by a Gaussian quadrat ure [I11 p. 113:1. On

the other hand, the testing (exterior) integrals in (56) and (60) (61). as well as the

integrals in the excitation terms (58) and (62), have regular and slowly-varying inte-

grands. and may thus be approximated using a one-point quadrature rule [12]. For

example, the integral in (56) is approximated as

KAi K;r ( A,,).," (G (r(,r) ,Ae(p')(63)

where @-p) and r(mn) denote, respectively, the local (with respect to node i-see Fig. 3)

and global position vectors of the centroid of element S'. This one-point approxima-

tion results in significant savings in t1,,, computational effort, even though it sacrifices

the symmetry properties of the impedance and admittance matrices. The integrals

appearing in (57) have regular, but rapidly varying kernels (which represent electric

field, rather than potentials), especially when the substrate between the microstrip

patch and the aperture is electrically thin. For this reason, both the interior and

exterior integrals in (57) are evaluated by Gaussian quadratures without further ap-

proximations.

Once the complex-valued matrix equation (54) is assembled and solved, which is

accomplished by standard procedures (LU factorization with partial pivoting, followed

by a forward and back substitution [11, p. 120]), the current density within each

triangular element may be obtained from (52) or (53).

3.4 Evaluation of spectral integrals and Floquet series

For the solution procedure described above to be practical, the Sommerfeld-type

spectral integrals that occur in (17)-(21) and (24)-(25), as well as the Floquet series

that appear in (22)-(23) and (26), must be efficiently evaluated. To accomplish that,

the Sommerfeld integrals are accelerated by asymptotic integrand subtraction and

16
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the method of averages [1i]. In addition to thiese techniquies, ari int'erl)olat i and

table look-up scheme is implemented to further re(duce the comp lutation i e I i.

The integration path is properly deformed to avoid the integrand singularities. which

occur on or near the real axis in the k- plane [16].

The Floquet series are accelerated as well, by a combination of the lKuiiiilicr

and Poisson transformations [17]. As a result of this procedure. the original slowly

convergent Floquet series is converted into the sum of an accelerated spectral series

and an exponentially convergent spatial series. Observe that in (61) these series are

integrated against the basis functions over the source and test triangular elements.

The source element irtegrais are introduced inside the spectral sums and evaluated

analytically [17, pp. 107--114], thus further accelerating the convergence of these series.

The same integrals over the spatial 3erie• are evaluated by a Gaussian quadrature, as

discussed in Sec. 3.3.

3.5 Far field and RCS computation

Once the coefficients 1i and Ki are found for each element, the current expansions

(52)-(53) are substituted into (42)-(43) to determine the far zone fields. The integrals

encountered in (42)-(43) are then recognized as Fourier transforms of the vector basis

functions (49), evaluated at k, = k. In view of (49) and (48), the Fourier transform

of Ai associated with a triangular element S, may be expressed as

A, = (A~e-jk,"P')
)Sý

*- ~(1k Lj-tj Lk) (64)2A

where the Li denotes the Fourier transformed shape function L1 . Upon using the

procedure of Appendix B, we may express Li as

2akL b b•j,(akp/2)e-kPPc.

+_i (ji(ajkp/2) - jjo(ajkp/2)j ej'kp,
2 kp

17
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bk L kk/2) + 'jJA,,(A'/2)1 p

where p,, is a position vector of the midpoint of edge i of the ,elient. ,1, U t;.

b, = tj, and j,. denotes the spherical Bessel function of order r,. WAe not I hat

(65) is evaluated for k- = k-,/ as is required in (42) (+3). then 4,0 = u- p artI

, = (o. It can be shown that (65) approaches a finite limit A/3 as A-,, 0.

Once the microstrip patch and the waveguide aperture contributions to the far

zone fields are determined, the RCS is readily obtained from (44).

4 Experimental Setup and Measurement Proce-

dures

The experiment was done in X-band, rather than in the millirneterwave range. to

reduce the effect of fabrication tolerances on the results. The components of the

measured structure are shown in Fig. 4. Circular and rectangular microstrip patch

antennas were investigated, each excited through a waveguide-backed concentric rect-

angular slot, as illustrated in Figs. 5a and 5b, respectively. The substrate and super-

strate materials used in the experiment (and also in the numerical examples presented

in Sec. 5) are non-magnetic and isotropic. Therefore, the nth layer may conveniently

be characterized by a complex number c,,(l -j tan 6,), where (,n is the real relative

dielectric and tan 6,• is the loss tangent. The substrate used in antennas of Fig. 5 has

c = 2.2, tan6, = 0.001, and thickness h = 3.15mm. The cover layer, if present.
is made of the same material with thickness t = 1.57 mm. The microstrip antennas

were mounted on the waveguide flange using plastic screws (see Fig. 4).

The dominant mode reflection coefficient F, referred to the aperture plane. was
measured using the HP-8510B network analyzer. Prior to the measurement, the

thru-reflect-line (TRL) two-port calibration method [181 was used to eliminate the

systematic errors due to the coax-to-waveguide adapter and to establish the mea-

surement reference plane (MRP) at the aperture location. In order to implement the

TRL calibration procedure, three sets of measurements, referred to as thru, reflect.

18
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Figure 4: Components of the measured structure.
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(b)

Figure 5: (a) Circular and (b) rectangular microstrip patch antennas used in the mea-

surements. Each antenna is fed through a waveguide-backed concentric rectangular

slot in the ground plane.
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Figure 6: (a) Thru, (b) reflect, and (c) line (delay) standards used in the lIP-8510B

TRL calibration procedure.

and line (or delay) were taken. The thru, reflect, and line calibration standards were

fabricated from four WG-90 waveguide segments, as illustrated in Fig. 6. The thru

was arbitrarily selected to be 84.2mm long (the length of the thru should be at least

two guide wavelengths, to reduce the interference between the coax adapters), which

resulted in the reflect length of 42.1 mm. A waveguide feed of the same length was

used in the actual measurements (see Fig. 4), to ensure that the MRP coincides with

tne aperture plane. Because no two coax adapters are identical, two reflect standards

were fabricated and used in the HP-8510B caiibration, as indicated in Fig. 6b. The

line (delay) was made 9.9mm longer than the thru. This 9.9 mm length difference

between the thru and the line, which at the center frequency f 10 GHz is approx-

imately a quarter of the guide wavelength A = 39.7 mm, results in a time delay of

24.94 ps, and this value was keyed into the HP-8510B network analyzer during the

TRL calibration procedure.

The procedure for the far field measurement is rather standard. and is not de-

scribed here to conserve space.
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5 Sample Computed and Measured Results

In this section we present sample computed results obtained using a conipuier pro-

gram implementing the procedures developed in Sec. 3. lor several anteCnn a ,ontipiu-

rations. these results are compared with the corresponding measured data obl, ailed

by the experimental procedures described in Sec. t. Although no published tesuilts

were available for comparison for waveguide-backed microstrip patch antennas. everV

effort was made to validate at least the most important modules of the developed

computer code against independently obtained data. First, the part of the programl

that deals with an arbitrarily shaped microstrip patch on a grounded substrate (in

the absence of the aperture) was extracted and used to compute the scattering char-

acteristics for rectangular patch antennas on both isotropic and uniaxial substrates.

The computed RCS results were found to closely agree with those published by New-

mann and Forrai [19] and Pozar [20]. Second, the part of the code that deals with

the aperture was isolated and used to compute the RCS of a narrow slot in a ground

plane. This problem was then related via the B 'inet's principle [21. p. 500] to that

of a thin wire scatterer with equivalent radius t22], and the latter was analyze using

a commercial code PCAAD [23]. Again, close agreement between the corresponding

RCS results was observed. Third, a stripped down version of our program, which did

not include the microstrip patch part, was used to analyzed a rectangular waveguide

radiating through a centered rectangular slot into a half-space. The computed equiv-

alent magnetic current in the aperture was found to closely agree (both in magnitude

and phase) with the corresponding result obtained by Harrington and Mautz [24.

Fig. 15a]. Finally, a rectangular waveguide radiating through a centered rectangular

aperture covered by a dielectric layer was analyzed. For this problem, in Fig. 7 we

compare our aperture admittance results with the computed and measured data ob-

tained by Bodnar and Paris [251. Although the agreement between the three sets of

results is judged to be good, we note that our data are closer to the measured results

than the data computed by Bodnar and Paris.

We next present measured and computed results for four waveguide-backed mi-

crostrip patch antennas with isotropic substrates, excited through a centered rect-
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- A A This approach
- e G- o-- Computed by Bodnar

* and Paris
• • Measured by Bodnar

and Paris

0

-01

fCGHz.)

Figure 7: Aperture conductance G and susceptance B normalized to the dominant

mode wave admittance of a flanged rectangular waveguide radiating through a cen-

tered rectangular aperture covered by a slab with dielectric constant F, = 2.25

and thickness h = 3.201 mm. TFhe waveguide has dimensions a = 22.86 mm and

b = 10. 16 ram, and the aperture size is 0.7a-by-0.8b.
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- Measured £ •.A -Measured

SComputed -A. AComputed

0A
* .

0

, .
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f(GH--) f (GHz)

(a) (b)

Figure 8: Plots of (a) VSWR and (b) phase of F for a waveguide-excited circular

patch antenna without a superstrate (Antenna 1).

angular slot by the dominant (TE10) mode. The parameters of these antennas are

collected for easy reference in Table 1. Observe that Antennas I and 3 are circular

(see Fig. 5a), while Antennas 2 and 4 are rectangular (see Fig. 5b). Also, AntennasI
and 2 do not have a superstrate, whereas Antennas 3 and 4 are covered by a dielec-

tric slab made of the same material as the substrate. In all cases the same X-band1

retnua aeud W-0 is used, with the interior dimensions a = 22.86 minI

and b-- 10.-16 ram. Referring to Table 1, observe that the largest discrepancy between

Sthe computed and measured values of the resonant frequency, where the minimnum of I

the voltage standing wave ratio (VSWR) occurs, is 1%. Note also that the resonant

values of VSWR are close to one and, therefore, the antennas are nearly matched at

their resonant frequencies. Their bandwidths (BW in Table 1), however, are narrow

(which is characteristic of microstrip antennas) and do not exceed 5%.

The computed and measured VSWR and phase of the dominant mode reflection

coefficient (LF) at the aperture for the four antennas are shown in Figs. 8- It. In

24
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"T1able 1: Paranieters of sainple wavegiiide-fe(l inicrostrip patch arltIi .

A\ntenna 2 3 I

Relative substrate c 2 9 2.2 -2.

Relative superstrate c / A2.2 2.2

Superstrate - i

thickness t (mm) N/A N/A 1.57 1..!

tan6• 0.001 0.001 0.001 0.001

Patch LP =14.0 LP = 13.7

dimensions (mm) Dp = 14.0 Wp = 11.7 Dp = 13.7 ,p= 11.1

Aperture VVW = 14.0 W,•, 14.0 Wa = 1:3.7 W,1 13.7

dimensions (mm) L, = 0.3 La 0.3 La = 0.3 L= 0.3

Measured resonant

frequency (GHz) 10.09 10.07 9.95 9.90

Computed resonant

frequency (GHz) 10.17 10.17 10.0 10.0

Error in resonant

frequency (%) 0.79 0.99 0.5 1.0

Measured gain (dB) 8.63 8.8 7.9 8.2

Measured

lowest VSWR 1.22 1.137 1.1114 1.013

Calculated

lowest VSWR 1.23 1.151 1.075 1.012

Measured BW (%) 4.0 4.24 4.74 4.92

Computed BW (%) 3.8 4.03 4.4 4.52
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Figure 9: Plots of (a) VSWR and (b) phase of F for a waveguide-excited rectangular

patch antenna without a superstraLe (Antenna 2).
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Figure 10: Plots of (a) VSWR and (b) phase of F for a waveguide-excited circular

patch antenna with a cover layer (Antenna :3).
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Figure 11: Plots of (a) VSWR and (b) phase of I' for a waveguide-excited rectangular

patch antenna with a cover layer (Antenna 4).
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(a)

(b)

Figure 12: Resonant currents of Antenna 1. (a) Patch electric current (imaginary

part). (b) Slot magnetic current (real part of the longitudinal component).

Figs. 12-13 we show plots of the computed patch electric current and the slot magnetic

current for Antennas 1 and 2 at their resonant frequencies. Since these currents are in

general complex-valued, only the dominant part (real or imaginary, as the case may

be) is shown in each case. These figures also illustrate the triangular mesh models

used in the analysis. The circular patch of Antenna I and the rectangular patch of

Antenna 2 were approximated by 394 and 288 triangular elements, respectively. In

both cases the slot was modeled by 44 elements. For Antenna 2. this resulted in

a 451-by-451 global system matrix in (54), and a computation time of 15 minutes
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XI

(a)

(b)

Figure 13: Resonant currents for Antenna 2. (a) Patch electric current (imaginary

part). (b) Slot magnetic current (real part of the longitudina! component).
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per frequency point on a 12-MIPS computer. In Figs. 1.11 15. we show the Tiva•-nrd

and computed fa, field patterns for the rectangular Antennas 2 and .1. he scallop

observed in the measured E-plane patterns is almost certainly caused by the surface

wave diffraction at the edges of the finite-size ground plane [261. T[his effect is riore

00

60 ob°goo go0o
0 -10 -20 -30 [dB] -30 -20 -10 0

E-plane H-plane
-Measured
.... Computed

Figure 14: Measured and computed far field patterns for Antenna 2.

S00

60 /0 ,06

0 -10 -20 -30 [dB] -30 -20 -10 0
E-plane H-plane

- Measured
.... Computed

Figure 15: Measured and computed far field patterns for Antenna 4.

pronounced for Antenna 4, because the superstrate increases the intensity of the

excited surface wave.
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Firnaliv. we present sample results for Antenna 2 timcr plane wave excit at irm

In Fig. 16 we plot vs. frequency the inagnit tide of the dol)ititant 11ode tpertire

transmission coefficient T. where the latter is defined in (11). As expected. the pjeak

of transmission occurs at the resonant frequency of the wavegnide-driven antenna

(see Table 1). In Fig. 17 we plot vs. frequency the monostatic RCS referred to I tni

C'., - I ' . .
CO F

6 0i=600, Oi-45°
E--

0•

8 10 12 14

f (GHz)

Figure 16: Magnitude of the dominant mode aperture transmission coefficient vs.

frequency for Antenna 2.

(the units are dBsm-'decibels above a square meter' [27, p. 160]) for a 9-polarized

incident plane wave with Ea" = I V/m. In addition to the total RCS of the antenna.

we also plot the contributions from the microstrip patch and the slot. We note that

the first RCS peak is clearly due to the first resonant mode of the patch. At the second

peak, which occurs near the resonant frequency of the waveguide-driven antenna. the

slot radiation is the dominant effect. We also note that there is an RCS minimum

between 10 and 12 GHz, caused by a destructive interference of the patch and slot

radiated fields.
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Figure 17: Monostatic RCS of Antenna 2.
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6 Summary and Conclusions

We have presented a rigorous integral equation analysis of a itiicrst rip pa I ch aiitennia

excited through an aperture in the mouth of a rectangular waveguide, or illininaletd
by a plane wave. The substrate and superstrate may comprise n ny miiber of I.otrop W

or uniaxial material layers. The patch and the aperture nuay both be of arbitrary

shape. Hence, wavoguide-fed rnicrostrip patch antennas of various, possibly irregular

shapes, residing in multilaver, possibly uniaxial media. may be analyzed within a sin

gle formulation, using the same computer program. The analysis has been validated

against experimental and published data. We have also shown that a good impedance

match may be achieved in this antenna configuration. but only in a narrow frequency

band.

Appendix A

Transmission-Line Analog of Layered Medium

In deriving the integral equations of Sec. 2.1, we have employed a transmission-line

network analog of the layered medium, in which each layer is represented by a trans-

mission line section, as illustrated in Fig. 18. This analog comprises two networks.

Z match

T T

:4

E_ L42 Z l

Ground plane Short

Figure 18: Layered dielectric medium and its transmission- line network analogue.
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which arise from t he lehorliposit ion of t h' elchtroliagliet ic held into two part i I I I(i

that are transverse-magnetic ('1 M) and trarisverse-ectric (IE) to l' The tplant i i,>
corresponding to these networks are distinguished Ky tle •iperscripts I arid . re-

spectively. The characteristic impedance and propagation constant of the ot ectioi

of the TE and I'\ transmission lines are given as

Z, I kI, k

= - kk Iv , k,

Let the network be excited by a IA shunt current source located at z' in the nth

line section of length d, as illi.istrated in Fig. 19a. Then. the voltage V,(z z') and

Z•-, I Z,. Z,'+1

k,.,_, 1A k3nl F kx,.+,

(a)

dn-
-u +

Zn- I Z'+ I)

(b)

Figure 19: Typical transmission line section with (a) IA shunt current source and (b)

IV series voltage source.
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current !,(-z at a point z within this line qctioll ob('V l miat luns ()I. , .,

d•~ ~ )c t( he oIia loll' =ýý, 1).Z , :' (<

,I

where 6 denotes the delta function. Here and below, we omiit the the superscript 1)

for notational simplicity. From t68) (69). 1 (-z- z') may be expressed in the travewlig-

wave form

t'(zlz' ~i- lFn(Zu) U'(zo)

•i '(oe]~ i+ l,(z)§1z1z -:) o7)z- z'

where < mnin(z.z'). Z> - max(z.z'), and [',(z.) an,, Fr(zo) are the reflection

coefficients 'looking to the left' and 'looking to the right.' respectively, at any location

z0 within the line section. By means of the translation formula

[•(z) = F,,(zo) e±1 2k"(z-z°) (71)

where the right and left arrows correspond to the upper and lower signs, respectively.

these reflection coefficients can always be expressed in terms of the terminal reflection

coefficients, [,, and F,, which are related to the corresponding terminal impedances

Zn and Z, (see Fig. 19) as

71 Z, - Z,n = ZnZ (72)

Z,, + Z,•

The voltage 1K,(z I z') and current 1,(z I z'), excited by a IV series voltage source V

in the nth line section (see Fig. 19b), satisfy equations dual to (68)-(69). which are

obtained from the latter by making the substitutions: Vi --+ I,, i -- V, Zn, - 1,,

and Y, --+ Z,. Furthermore, it can be shown that the following symmetry and

reciprocity relations hold (cf. [28, p. 194])

;(zlz') = Vi(z'I Z), 1(z-Iz') = I,(Z'Iz), V,(z I Z') -I,(.' IZ) (73)
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As a restilt, I,.(t z z') can be obtained from (70) t)v replacing in lie latier , hv /,

(wwhich also causes the reflection coefficients to change signs). I(z it') follows froln

(68) and (70). and ý ,( z') may then be obtained from the last relation in (73 .

The voltage and current on the nth transmission line section that is source-free

satisfy the homogeneous form of (6S)-(69). From these equations, the voltage at any

point z' within the same line section may be found as

e TJ k 'n (z -z °) [ "- -

V(Z) = V(z 0 ) 11+ In(zo)Jk'(z-o)J (71)
L+ F(zo)

where the upper (lower) sign corresponds to z > zo (z < z,). In the above. Z0 -,, or

zo = z,+l, depending on whether the source is located to left or right, respectively, of

the nth line section, and V(zo) is is the voltage across the line terminals at z = z,. We

have omitted the subscript of V in (74), because the latter applies irrespective of the

nature of the source, and dropped z' from its argument, because (74) only implicitly

depends on the source location, which is outside the line section. The current 1(z)

corresponding to (74) may be obtained by substituting the latter into (68).

Appendix B

Fourier Transform of a Triangle Shape Function

The Fourier transform of a shape function Li associated with the nth triangular

element is given as

=i Li eJk"P dS (75)

where k, = iikA. To evaluate the integral in (75), it is helpful to first convert it to

a line integral around the boundary contour, OS,, of S,, (cf. [29], [30]. [31)). This is

most easily accomplished by noting that

k'°= V,. 1 jk ) (76)
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and by making use of the divergence tleorem..As a resiut, when A•, 0. wo otaitn

1 .. (2j +A - . 1,),jk'P , iid

where =i x it and ii denotes a Unit vector normial to d>,' at iii lthe plane avld

pointing out of S,. The integral in (77) is easily evaluated in the local coordinateds.

if one notes that when f is on edge i, i = A,. 0 < Lk•L_ 1, 0. .1 L - Lk. and

dl = eidLk (see Fig. 3). Also, in that case p = pj + L•, where is a vector from

node j to the point f on edge i of tht element. The resulting close-form expression

for 1i is given in (65).
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Analysis of Multiconductor T~ransmission Lines of Arbitrary
Cross Section in Multilayered Uniaxial Media-

(.'fluing I G. filsi. lHot~r F. llkitri rtvý,Itof A. MWi1Ia1Ikk1 . adlI lDahi;ti /~IeILt,

Abst ract -- A titii xC- polentit al elIuti fcliIld i liteC2tiil eq(alld oll i-' forititlat (i( dli'

aIppliedI in conjunct ion with thle mietlhodf of litoillwlt s to aniavzt' a t rawulil"i511ioHIP,

-Svstem c onsist ing of multiple conutin~ i ttrips*~ of aridt rarv cross sectlonl ml, lit'(dt1

in a stratified mcdi urn with or wit hout I op and./or hot torn t.4roii d plaiie'" IFact [av

of the mnediumn Is possibly- unilaxiall- anijsot ropic. %v.ithI its optical axi, perpwrtdicii-

lar to the dielectric interfaces. ( ornpi it ed dispersionl CUrves` aMi N ioIa l CUTVIIS iient ar

p)resented and, when possible. are compared withi dat a available iti the literatutre.

1 Introduction

Recent. advances in integrated circuit technology hav admirsrIp.t ili

cop~lanar strips. anid similar wave-guidin~g st ructutres attractiv, ioto only% InI TinIICRoAVvf

and mnillimeter-wave applications, but also in high-spced digital ((I) trs i, -n

(luctors used as interconnects between 11,51 (leviceS mlay- 1e very O clo 0 To aitot her.

which necessitates treating them as a single transmission line capable of ujliph rT II)Q

several modes. rather than several isolated trarisnmission lines. The iliterCOMPInc sIII

modern microwave and m il limeter- wave Integrated circuits tend to have trapezoidal

cross sections due to etching undercuts o~r as ai resutlt of t he epitaxial irowi h process

'This work was supported in part by the U.S. Offire of Naval Rusoarcl; tONR) undr( mrc

'N00014-90-J-1 1197.
t ('. Gý Hsu and R. F. Harrington are with the Departmnirt of Electirial and( (om~puter F'nginefer-

Ing, Syracuse University, Syracuse. NY 13244--1240.
IK. A. Michalski is with the Electromagnet ics v- Microwave Laboratory, Dfepart nient of Eliectrical

Engineering. Texas A&M Unhiversity, College Station. TX 77N43 3128.

6D. Zheng was with Texas A&ýM tUniversity. 14e is now with Integrated E~ngineering Software,

Inc., 347-4.35 ElliP- Ave.. Winnipeg. Manitoba. Canada, P313 1Y(;.
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[11, [2], and cannot always be convý'dered infiniitel t0inn. I liese i:terconiect s are

ported by a dielectric substrate. which often exhibits uniaxial anis'0t rop•. i it rod c.ed

in the manufacturing process [31.

Many numerical procedures have been successfullv applied in Ithe past two dvcadeý

to obtain frequency-dependent characteristics of ricrost rips ani( st riplines. but mioi

of them are only applicable to (or optimized for) planar conducting silrips of zero

thickness (cf. [4]. [5]. [6]. [7]. [81, [9], [10]. [111. [12]. [13]. 11-1], [15]. •l(i'. t17 t. to naimi

just a few). Relatively few papers have considered laterally open inicros t rip st rm icres

with conductors of other cross section shapes. such as rectangular [18]. lrapezoidal

[191, [20]. circular [21], [22], or rectangular with semi-circular edges [23]. The concept
of equivalent width has often been eciploved to approximately take into account the

strip thickness [24]. However, it has recently been demonstrated, using a rigorous

n-ixed-potential integral equation (XIPIE) approach "19]. that the dispersion curve

for a finite-thickness microstrip lies below that of a Microstrip with zero thickness.

which is opposite to what is observed when the concept of equivalent widlth is used.

In this paper, we use an MPIE approach, which was originllv developed for

objects in isotropic media [25], [19], [26]. and recently extended ,, ,ibjects in uniaxial

media [27], to analyze a transmission-line system composed of multiple conductors

of finite thickness and arbitrary cross section, embedded in a medium consisting

of an arbitrary number of planar, possibly uniaxially anisotropic, dielectric layers.

Computed dispersion curves and modal currents for bound modes are presented and.

when possible, are compared with data available in the literatu-e.

2 Formulation

The cross-sectional view of the structure under consideration is shown in Fig. I.

The medium consists of N planar., homogeneous dielectric layers, with the interfaces

parallel to the xy plane. Each layer, say the nth, is characterized by permeability Prn

and by transverse and longitudinal perin ittivities -t,, and 5,. res'•ectivelv. all relative

to free space. The top layer of the medium may extend to +xy along the Z axis. or be

shielded by a ground plane made of a perfect electric conductor (PE(). Similarly. t he
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z

(optional ground plane)

zv Nv- (EtN- ' Z-I E- I ArN-1

N-2 (Et".v-. E /lrv)

3 dNU: @ L (t, 'Iz3,Ir3)

d2 (Et2, Ez2, Yr2)

z-Z2

di (thEzi, /Prl)

(optional ground plane) X

Figure 1: Cross-sectional view of a multiconductor transmission line embedded in a

stratified uniaxial medium.
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bottom layer may extend to -ox- along the z axis. or be shielded by a PEI'( grournd

plane. There are A,: PEC strips embedded in the layered inedium, all iiniform anI

of infinite extent along the yj axis, but of arbitrarv cross section shape..\n , t im.

dependence is assumed and suppressed throughout.

Since we are interested in modes propagating in the y direction, we may assuie

that the phase factor c-1'Y is common to all the fields and currents, where .1 is the

propagation constant to be determined. Hence, we may express the surface current

density as
J(r) = J(i) e-'- (1)

where f is the arc-length coordinate on the contours of the conductor cross sections.

By enforcing the condition that the tangential electric field must vanish at t he surface

of the conductors, we obtain an electric field integral equation (EFIE) of the form

x, X GEJ(iX ) - JP = 0. r E L. n = 1.2. A (2)

* where GEJ(x, zlx'z'), with x =x() and z =z(e), is the electric field dyadic Greens

function of the layered medium [27], and where ii, denotes an outward unit vector

normal to the boundary L, of the nth conductor. In the above and throughout.

primed quantities denote source coordinates, unit vectors are distinguished by carets.

and dyadics by double underlines.

The severe source-region singularity of the kernel of the EFIE (2) makes it un-

suitable for a direct application of the method of moments [28]. [29]. Hence. we first

transform it into the MPIE form,

it,,X •. {A(x,z)+(Ve - ýjjj3)4)(xz)} = 0. rE L,. n,= 1.2.....V, (j)
i=1

where V, is the transverse (to y) part of the operator nabla. and wt -e

Ai(x, z)= j KA(X, zIx'. z')• J(P')dg' (1)

and

4',x z):) Kl(x, zix', z') (V', - tjj3). J(P) d'(

al.*,
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are the magnetic vector potential and the electric scalar potential. Idespe('CiwVy,. d(II

to the surface current on the ith conductor. These potentials are not iniqile. as

discussed in [30], [26], [27]. In the latter reference. two different MPIE fornImIlat iuions.

referred to as the "t raditional" and the 'alternative, are developed for arbitrarily

shaped conductors in layered uniaxial media.

The expressions for the dyadic kernel K' 4 and the scalar kernel K': colliprise

improper spectral integrals of the form

Sc~f~1 f = j (k,) cos k, (x k) (kz (A)S{/k:)} = o sink,(x - x')

where k, is the Fourier transform domain counterpart of r. and where the subscripts

c and s are associated with the cosine and sine functions, respectively. and n assumes

the values 0 or 1. Using this notation, the nonzero elements of K-_4 and KO' for the

traditional MPIE formulation [31], [27] can be expressed as

KAjt (X. six'I. s') =ScO{V/~m(ZIZ') (7)A (X_'X1 -= h

0
Ka(x, zsx z') = - jko qo S. { L' [mn(zz') - /,0)(Z') }S

.--11i =~~ {'om(i' ~ i'I (9)••

xZ~~kixk2 (z 1 z~ mK*2(x.,six', z') = - jkoioSsi{! [ymk:z)-1, 7 ~:s]}(0

1'4(x, zIx",z') = 7ko SoI•°o, k [ Vhn(Z I)- Z) 7"m n(ZlZ') l)

2f[Itm (""2
K' (x, zix', z') q0 ?ScOiLar~~t _ ~ ,J

+ lirmlTr Tk) , Irnns'} (12)

V 7~(x,z Ix', z') =Sco{+[i~zz)-Vm(I1}(3

0 

}5 /.,i.,k ] l,,,( l 2
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where ijo and k0 denote. respectively, the intrinsic impedance and wavewiuiber of

free space, and k' = k' +32. The subscripts in and 1n in the above iNdicate that the

observation point (r,z) is in the mth layer, and the source point (x'. z') in iwe /t 11

laver. In deriving (7)-(13), use has been made of the transmission-line network aria-

log of the layered medium [32. Ch. 2]. which is illustrated in Fig. 2 for a tliree-lavyer

geometry. This network actually represents two networks (having identicai corifigura-

tions, but in general different propagation constants and characteristic inipedance,,)

that arise from the decomposition of the electromagnetic field into partial fields that

are transverse-magnetic (TM) and transverse-electric (TE) to i [32]. [33[. The Sit-

perscript p in Fig. 2 stands for e or h, which designate, respectively, the quantities

associated with the TM and TE networks. The propagation constants of the nth

transmission line section are found as

,= kotnirn - - kp = k-t.l0 ,rn - 0 (14)
Z: n

where the branch of the square root is determined by the condition that hn{Ik' } < 0.

The corresponding characteristic impedances (and admittances) are given as

1 0h = _ _ 1 k0 r0I :- )

fl}§ Y k0 6 1,' ny-I-h k h

in (7)-(13), Vmrtn(zIz') and I,,n(ZIZ') denote, respectively, the voltage and current at

z on the mth transmission line section, due to a I A current source at z' on the 71th

line section. Similarly, V.,n,,(zlz') and /•.mn(z.z') denote. respectively, thle voltage

and current at z on the mth transmission line section, due to a I V voltage source at

z on the nth section. These transmission-line Green's functions are derived in the

appendix for a medium with an arbitrary number of layers.

3 Numerical Method

In this section, the method of moments [28], [29] is employed to solve the MPIE (3)

for the multiconductor transmission-line problem of Fig. 1. As the first, step of the

numerical procedure, we approximate the cross section contours of the conductors ib

6
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(z)
t MATCH

et3,~z3,~ k 3  Z3
Z=d 2

6t2, C z2, /1kr2 k 2

z=O . .
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EtI EzI Yrl_ kP, Z p
'Z d- &--.1 'PEC GROUND PLANEd SHORT CKT.

Figure 2: Transmission-line analogue of a layered medium.
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piecewise linear segments, as illustrated in Fig. 3. The arc-length (,ordinate i will

now be associated with the approximated contours, instead of the original onis. [lhe

method of moments requires that the unknown currents be expanded in terms of a

set of known basis functions with unknown coefficients, viz:

Jr(O)=•g~,() .11(()= E t•-Y f,•!(), p = 1. 2 ..... .\ V •
J I

where

( - -p
A~r -Ap(f) = Jp(+l r( 7im+ p "-- I (P < t, < -1+)

{ ' - otherwise

with
p p1P j .l~ rp~l-

A_7+

and
11il)= ,l,• t (19)

0. otherwise

In the above expressions. the subscript j and the superscript p signify quantities

related to the jth expansion function or segment on the pth conductor (the superscript

p is omitted in Fig. 3 for simplicity).

The MPIE (3) is next tested with jfI' and Ae. In this process. the transverse

nabla operator in (3) is transferred to operate on the testing function by applying

Green's first identity, viz:

Af A(e). VtP(x, z)de = V - I -A'(Q) 4(x, z)df

- --iFi ~ (](xzd (20)

To save computer time, the following approximations are used in the testing proce-

dure:

J I()f(g)dg [Apf,. ff((1 (21)

8-1)
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"" g=J+2
(Xj+21 Zj+2)

x *Ijz~l

(x3.1,, zj)

ri 7j+ r+1

(0,0)

Figure 3: Linear segmentation model of a contour.
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where f(() represents the scalar potential ( x. z ). or a coml)onent of the veclor po(-

tential A(.r.z). and where t' is the arc-lerigth coordinate of a point specified by

the position vector (cf. Fig. 3)
p p

rP+ X p , +Z -p r, + r',+• (23: i
*=T x + _ • - "2~jL~

i2 2 +

Furthermore. when computing the magnetic vector potential due to A'. we approxi-

mate the resulting integral as

K*4 JK 4 x I X'." ') A 3(f')df' C J r iz K "lx i p'_ + i,+ . , ')+p fl'

(24)

As a final step, we substitute the expansions (16) into the tested form of (3) to

convert it into a homogeneous matrix equation for the current expansion coefficients.

Assuming, for simplicity, that there are only two conductors, this equation has the

form

[z I itt iZ2 1Y Z .tj LZ~2  I [1.j [0)
[z't [ZitY z ?n"2't q
[z21,yt] [Zltyy] fZy t ] [Z2,y2

- j tLj) L.7 L 3 1 [01

with the matrix elements given as
, pp

*Z~q. tt 
- (A •tt+ aP.tl)±+1 ( \4i+,3 ±A, +t.•+, )_ _p t A i i + 1 { p q , t t _ , p q , t t

(-P_ +i+.j)+ •+ (26)

I_ (ýDp_ i A )pq tu ± )+l Ap 4y pq (Dpq
"Yi -- T t+ A-q7- iI'J+J34,J1 (29)

Zp, 'Y = A2 -An AP't z+ L' Aptyj.3(pq (pq (27)
2 " 1j3(K~+.)

7piy ýi pyt pqy (28)
x3 •+lzu4t-2:(A ~Y+Ai,+) .ji3 + I(2

zpq,yy - APAPqyy - 12APPq(29)

where the index j, when used as a subscript, should not be confused with the imagi-

nary unit. In (26)-(29), we have introduced the notation

SA]j' i=f pq=7_-, K'_jx', • i'd[' (30)

10
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where (-r.q)= (ty), and t-t(C)=+ for (P, < i < tP. In the general case with

NA conductors, the matrix in (25) comprises -1.\2 blocks of sublmat rices.

The kernel functions in the above have been defined by the spectral integrals

(7)-(t13). which are evaluated by a composite Gauss quadrature. To accelerate the

convergence of these integrals, we first subtract from the integrands their large ar-

gument asymptotic forms. Furthermore, when !.r - x'i is larger I I an 1ý - z'. we

also employ the method of averages [25], [341. Finally, the closed-form integrals of

the asymptotic forms are added back to compensate for the subtracted terms. The

former explicitly exhibit their source-region logarithmic singularities, which are inte-

grable and are easily taken care of in evaluating the kernel integrals (30)--(31).

The equation (25) has nontrivial solutions only for those values of 3. which make

the matrix determinant vanish. These values are found by the Muller method [35].

and the corresponding modal current coefficients are then determined from (25).

4 Numerical results

In this section, we present sample numerical results for the propagation constants and

modal current distributions for a variety of transmission-line configurations. In all

examples considered, the media are assumed lossless and nonmagnetic (i.e.. pu,, = I

for all layers). Some of the structures analyzed comprise both uniaxial and isotropic

dielectric layers. If a layer is isotropic, its relative permittivity is denoted by •r* Only

the proper, bound modes, which propagate unattenuated with a real propagation

constant /, are considered. The dispersion curves are given either for 3/ko, or for the

effective dielectric constant eeff = (3/k 0)2 .

In Fig. 4, we present dispersion curves for a circular-wire transmission line embed-

ded in a grounded two-layer isotropic medium with or without a top ground Alane.

The latter configuration was first analyzed by Fach6 and De Zutter [21]. using an

approach especially developed for wire conductors, and their results are shown by

I1
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Figure 4: Dispersion curves for a circular-wire transmission line.
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square symbols in Fig. -1. In this figure. &,r is plot ted veirsus thl1e cle(irical t Ikk -

of the substrate. d/AO, where A0 is the free-space wavelength. -lhe wire is couipletely

embedded in the dielectric slab for h/d = 0.75 or 0.5. and in the air reailon when

h/d = 1.25 or 1.5. In the analysis, the circular cross section contour of lie wire was

approximated by sixteen linear segments of equal length. \\e not(e that iersult

for B/d = oc (unshielded structure) are indistinguishable from those for B/d = 10.

t'his is to be expected. since the field of the bound mode is mainly trapped in lhe

substrate and near the conductor. IThe presence of the top ground plane presents a

noticeable disturbance to the bound wave only if it is close to the conductor or to t IIe

dielectric interface.

In Fig. 5. we present dispersion curves for a three-conductor microstrip trans-

mission line, which supports three fundamental modes. The dielectric is made of

ceramic-impregnated teflon, known as Epsilam 10. which is uniaxial. with >, = 13

and E, = 10.2. As a check for the computer code, we have further divided the di-

electric slab into two layers. Two configurations have been analyzed. one without an

air gap (h/d = 0), and the other with an air gap (h/d = 0.04). and the correspond-

ing results are shown in solid and dashed lines, respectively. These configurations

have been previously analyzed by Kitazawa [15]. the first one by a full-wave method

(square symbols), and the second by a quasi-static approach (dotted lines). It is of

interest to note that a small air gap between the ground plane and the dielectric slab

results in big changes in the dispersion curves. The longitudinal (transverse) current

distributions for modes 1, 2, and 3 are found to be even (odd). odd (even). and even

(odd), respectively.

In Fig. 6, we present dispersion curves for a three-wire transmission line embedded

in a grounded dielectric slab, which supports three fundamental modes. The solid

lines represent the results computed by Fach6 et al. [22] for the case of an isotropic

substrate (E, = 4), whereas our results for the same substrate are illustrated bv the

dotted lines. Note that a logarithmic scale is used for the frequency. Our results for

a uniaxial substrate, where et = 3.9 and •, = 4.1, are indicated by three different

symbols. As can be seen from the figure, even this slight anisotropy has a noticeable

effect on the dispersion curves. In the isotropic case, all three modes remain in the

13
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Figure 5: Dispersion curves for a three-strip microstrip transmission line.
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Figure 6: Dispersion curves for a three-wire transmission line.
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bound regime ii the frequency rang1I considered. Ii t ie liIiaxiat ca',c. ii-o~te 2 1ut •r-.

the leakky regime [36] at a frequency between 30 to It. (;l/z. abbove which the 114oIIIlitIt

slatb mode. indicated as T[0 in [ig. 6, is excited 1. 1Tlie dispersi;o curvc of I • i t la! I *r

is obtained by finding the zero of (3-1) (se"ve the appendix). Thie k)i[wutuiidal and
transverse modal current distributions at f = It)(;Ltz are Thown ii Fiz - Ir iiide'

1, 2. and :1. the longitudinal (transverse) currents are eveln (odd)l. (,vi (odd i. and od(dhi

(even). respectively. Because of i his svnetry property. we Mnfly plol Iile , urrc'nlt

on the left and center conductors. WC, note that the longitudinal and transverl,('

currents are in phase quadrature. which is characteristic of bound modes on Oish.le-

transmission lines.

We next consider three transmission line structures, which differ in the cross sc-

tion shape of the conductors, as illustrated in Fig. 8. The cross sect ions of the

conductors are (a) trapezoidal (which may arise as a result of an epluaxial growth

process). (b) rectangular (the ideal case). and (c) inverted trapezoidal (which may be

due to etching undercuts). The dispersion curves foi the three fundameWnTal modes

that each of the three transmission lines may support are plotted in Ftig. 9). [he

longitudinal (transverse) current distributions for modes 1. 2. and 3 are fou nd to be

even (odd), odd (even), and even (odd). respectively. In Fig. 9, we also show the

quasi-static results obtained by Schroeder and Wolff [21 for the sam-e transmission

lines, but having a finite-width substrate. We observe that the dispersion curves for

configurations (a) and (6) differ less than those for (b) and (c). This is expected.

since in the former two geometries the conductor widths adjacent to the dielectric

slab (where there is a highly concentrated field) are the same. W\e also note that

the quasi-static results of [2] are very close to the low-frequency limits of mode :3 of

our results. However, it is not clear from [2] to which mode these quasi-static values

correspond.

In Fig. 10, we present dispersion curves for a two-strip transmission line in an

unshielded medium comprising both uniaxial and isotropic layers (see the inset ). Since(

there are only two conductors and there are no ground planes in this structure, we

expect it to have only one non-cutoff fundamental mode (called mode I in Fig. 10).

Nevertheless. an additional non-cutoff mode (called mode 2) has been found. In

16
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S0o mode
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Figure 7: (a) Longitudinal and (b) transverse current distributions at f = 10GHz

for the three-wire transmission line in the configuration of Fig. 6. with 3 = 39 and

= 4.1.

17



150

.t•

d er =12.9

(a) PEC

W1 S W2 : S W1

t'
d7 er =12.9

(b) PEC

(c) PEG

Figure 8: Geometry of three transmission line configurations with conductors of (a)

trapezoidal, (b) rectangular, and (c) inverted trapezoidal cross section. The dimen-

sions are d = 120 yrm, W, = 15jm, W2 = S = 10Wpm, and t = 3pm.
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II I

mode (structure)
sUaSistatie 

a(Schroeder & Wolff, 1989)1b

0.. 3 (c)
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Figure 9: Dispersion curves of modes 1., 2, and 3 for the transmission line configura-

tions (a), (b), and (c) of Fig. 8. The quasi-static results of Schroeder and Wolff are

for a structure with a substrate of a finite width of 130 pm.
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Figure 10: Dispersion curves for a two-strip transmission line in an unshielded layered

medium.
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addition to the dispersion curves of" these two riiodes. we also plot inI F[iz,. li !!w

dispersion curves of the first two slab modes (indicated as I' 0 and T\11'). comnl pi•

from (3-) of the appendix. The longitudinal currents of mode I on the two strip-

(not shown) are found to be in different direct ions. whereas those of mi•ode 2 are it

the same direction. ftenci. mode 2 is similar to the hindamental mode of it acoatedl

conducting cylinder, where the surface current on the circumference of lite cvtindier

flows in the same direction, and whose suitability as a single-conIlictor I ranslisi5'IO

line was studied by Goubau [37]. A salient featture of this G(ouban mode is that i1s :,4j.

is very close at low frequencies to that of free space. and that its field is very loo•;lv

bound to the dielectric. In fact. when we replace the two strips in the configural ion

shown in Fig. 10 by a single strip, we still can find a mode. which behaves simni'arlv

to the aforementioned mode 2.

5 Conclusion

A mixed-potential integral equation (MIPIE) formulation has been implemented in

conjunction with the method of moments to compute the propagation constants and

modal currents of a multiconductor transmission line embedded in a laterally open

multilayered uniaxial medium. The approach is general and flexible. and can handle

both open and shielded structures. It is applicable to conductors of arbitrary cross

section. including trapezoidal. which often arises in practice (fie to underetching or

as a result of the epitaxial growth process. Sample numerical results have been pre-

sented for several transmission-line configurations and, when possible. compared wit hI

available published data, obtained by specialized techniques not easily extendable to

conductors of arbitrary cross section.
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Appendix

Transmission Line Green's Functions

Consider a transmission-line network analog of the lavered mediurn of Fig. 1. formed

by a tandem connection of transmission line sections, each correspon/ding to a dl•ilec-

tnric laver (cf. Fig. 2). Let the network be excite(d by a I A current source locat.ed at

z' in the nth line section. Then, the voltage and current at z within any line section.

say the rnth, satisfy the transmission-line equations [321

dz m zk~ m zn tnn

dI~(32)
dz tjm .4p yp V,, , + 6(:-

where the propagation constant kým and characteristic impedance Z•, (and admit-

tance Y,) have been defined in (14) and (15), respectively. The superscript p, which

stands for e or h. as explained in Section 2, will henceforth be left out for brevity.

When m = n. i.e.. the source and observation points are within Lhe same nth line

section, the voltage V, is readily found from (:32) as (cf. [32. p. 213]. [26])

',n,,.(z-z') = Zn 2W I + , I + r, n--2k2:<-:n) L + r j2k.o(z,.-> (33)

where

Vn = 1 - En n €-2k (31)
4-- -- 4

and z< - min(z, z'), z> - max(z.z'). In the above, F, and r, are the voltage

reflection coefficients "looking to the left" and "looking to the right.- respectively. at

the two interior ends of this line section, as illustrated in Fig. 11. These refiection

coefficients can be found as
-- +

D T n -z nz

4--

Zn + Zn

22
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0T

z zn-_li t n• I Zf÷ 1
n-1I Zn I kzn+1

I II I

Zn ZI Zn+1 - Z

Zn, rn Zn, rin0

Figure 11: Transmission line section containing a current source.
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with the terminal impedances given by the recursive relations

- Zn±i +jZn±i tall (k-.n±d,1n±1 )Z, = Zn±1  136,

Zn±ý + J Z... 1 t ± (/,,±I)

where the upper and lower signs correspond to the right and left arrows, respect ivclv.

For m 5 i. l,,,n(-Iz') is readily found from (32) and (33). bY enorcifi'g. tlie('

continuity of the voltage and current at the interfaces. As a result, we obtain "261

lji~mn(gZIZ) = Innrt(n+1. ) Tmn(Z) , + I < m. <S= •_ ' - -37)

1'nn( znz'),Tvm(z). I z< in < n

where

TTvmn(Z) = r-, - eJ 2 kzmrm+ rn 1 + q
1 + rm e--j2kdm ,+1 1 + T -2C '

~ jk~mzm~iz)n-i ( + *) -jk_'J,

TV ,mn(Z [+Fme~z@~J rJ (:39)
1 + Fm e-j2kzmdmI i=m+I 1 + U •-ik'h

It is understood in the above that the product terms are equal to one if the lower

limits exceed the upper limits.

The transmission-line Green's functions can be efficiently implemented into a com-

puter program, as explained below. First, we recognized that (33) may be written

as

vi,.(z-IZ') = Z f, (n; -; z'" 1; F (.40)

which serves to define the function fl. The corresponding current can then easily be

found from the first of (32) as

Ii,,,.(z z') f 2 (n;z;z".±Fn ) , Z17 4-)

which defines the function f2. In a like manner, we may write (37) as

Vi,mn(ZIZ') = ZAl [__. -m
f, n z'; Fr; E n; "f H;n;z; F3I(m<J<,)], rn < n

(12)
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which defines the functions f3 and f4. The corresponding current call aj.ain be2 founld

from the first of (32) as

4- 1

-�j2 (n:;'n = - - -

The current I,,,.. and voltage 1 i,•' due to a unit-strength voltage source iII the

nth line section, satisfy a set of equations dual to (32). Hence. we may obtain t liese

voltage and current transmission-line Green's functions from ( 10)-(!43) by' making

the substitutions V -' I, I V. and Z Y V. Note that the last substitution

causes all reflection coefficients to change signs. We observe that only four subrou-

tines, corresponding to the functions f, through f., are required to implement all the

transmission-line Green's functions in the computer code.
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